1. Field of the Invention
The present invention relates to an electrical card connector, more particularly to an electrical card connector with a push-push mechanism.
2. Description of Related Art
Chinese Patent Issue No. CN 201018110Y issued on Feb. 6, 2008 to the same assignee of the present invention, discloses a conventional electrical card connector for receiving a card. The electrical card connector includes an insulative housing, a plurality of contacts fixed in the insulative housing, a push-push mechanism and a metal shell covering the insulative housing. The insulative housing defines a card receiving space for accommodating the card. The push-push mechanism includes a slider moveable along the card insertion direction, a coiled spring abutting against the slider, a link rod connecting the insulative housing and the slider, and a locking arm retained on the slider for holding the card. The slider includes a receiving slot for receiving the locking arm. The locking arm includes a fixing portion fixed in the slider and an elastic locking protrusion extending into the card receiving space. However, since the elastic locking protrusion itself is weak and the card locking type is single, only depending on the elastic locking protrusion locking with a notch of the card, it is hard to stably lock the card in position and prevent the card from being pulled out of the card receiving space. Besides, since the locking force between the locking protrusion and the card is slight, the card may easily fly out of the card receiving space during the card ejection process.
Hence, an improved electrical card connector with improved card locking features is needed to solve the above problem.
An electrical card connector for holding a card with a notch defined on a lateral side thereof, includes an insulative housing defining a card receiving space for accommodating the card, a plurality of contacts with contacting portions extending into the card receiving space for mating with the card, and a push-push mechanism located at one side of the card receiving space. The push-push mechanism includes a slider movable along a front-back direction, a spring abutting against the slider and a metal locking arm fixed to the slider. The slider includes an engaging portion extending into the card receiving space for being pushed by the card so that the slider is moveable between a front initial position where the card is initially inserted into the card receiving space and a rear locking position where the card is ultimately locked in position within the card receiving space. The slider includes a sideward protrusion extending into the card receiving space. The metal locking arm includes a card lock adjacent to the protrusion and extending into the card receiving space along the same direction of the protrusion. When the slider is located at the rear locking position, both the card lock and the protrusion are locking with the notch of the card. When the slider moves from the rear locking position back to the front initial position, the card lock cooperates with the protrusion to lock with the notch of the card so as to prevent the card from flying out of the card receiving space.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details.
Referring to
Referring to
Referring to
Referring to
The detect contact group 3 includes a first detect contact 31 mounted at the front of the side wall 12, a second detect contact 32 mounted at the rear of the side wall 12, and a common contact 33 between the first detect contact 31 and the second detect contact 32. The first detect contact 31 includes a first engaging arm 311 for engaging with the electrical card and a first soldering portion 312 soldered to the PCB. The second detect contact 32 includes a second engaging arm 321 for engaging with the common contact 33 and a second soldering portion 322 soldered to the PCB. The common contact 33 includes a third engaging arm 331 for engaging with the first detect contact 31, a fourth engaging arm 332 for engaging with the second detect contact 32, and a third soldering portion 333 soldered to the PCB. When the electrical card is just inserted into the card receiving space 10, the first engaging arm 311 is driven by the electrical card to contact the third engaging arm 331 of the common contact 33 so as to realize a first detection. Then, with insertion of the electrical card, the fourth engaging arm 332 of the common contact 33 is driven by the electrical card to contact the second engaging arm 321 of the second detect contact 32 so as to realize a second detection.
The push-push mechanism 4 includes a slider 41 movably set on the bottom wall 13 and located opposite to the side wall 12, a coiled spring 42 compressed between the mounting wall 15 and the slider 41, a link rod 43 slidable in the slider 41 for controlling positions of the slider 41, and an elastic metal locking arm 6 fixed to the slider 41.
Referring to
Referring to
Referring to
According to the present invention, when the electrical card is just inserted into card receiving space 10, the card lock 62 is outwardly driven by the electrical card to get deformable. Under the guiding of the guiding surface 4151 of the protrusion 415 and the card lock 62, the electrical card ultimately passes the protrusion 415 and the card lock 62 with the protrusion 415 and the card lock 62 both engaging with the notch of the electrical card to improve locking force. With further insertion of the electrical card, the engaging portion 412 of the slider 41 is driven by the electrical card to slide backwardly from the front initial position to reach the rear locking position. Under this condition, even if a pulling force is applied to the electrical card, much more resistance is needed to overcome before the electrical card and can be pulled out from the electrical card connector 100. Besides, when the electrical card is needed to withdraw from the card receiving space 10, the electrical card is pushed again. During the slider 41 moving from the rear locking position back to the front initial position, the protrusion 415 helps the card lock 62 to prevent the electrical card from flying out of the card receiving space 10.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the tongue portion is extended in its length or is arranged on a reverse side thereof opposite to the supporting side with other contacts but still holding the contacts with an arrangement indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
7484977 | Hsiao | Feb 2009 | B2 |
7578703 | Hsiao | Aug 2009 | B2 |
7682168 | Hsiao | Mar 2010 | B2 |
7909628 | Yu et al. | Mar 2011 | B2 |
8308495 | Yu et al. | Nov 2012 | B2 |
20100267260 | Yu et al. | Oct 2010 | A1 |
20110034050 | Zhu et al. | Feb 2011 | A1 |
20110230072 | Yu et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
201018110 | Feb 2008 | CN |
Number | Date | Country | |
---|---|---|---|
20120178302 A1 | Jul 2012 | US |