Catheters are utilized in many interventional procedures as a conduit used to deliver a variety of therapeutic agents such as medical devices to a treatment site. While some catheters are configured as simple tubular conduits that passively deliver therapeutic agents and/or devices, other catheters are further configured with components requiring electrical power.
For example U.S. Pub. No. 2016/0345904, which is hereby incorporated by reference, discloses a catheter having one or more sensors and related circuitry at its distal end. These sensors can include pressure or temperature sensors, among others, for measuring conditions within a patient's vascular system. The body of the catheter is constructed with a layer of braided wires, some of which are used to conduct electrical current between the sensors and a proximal end of the catheter.
In another example U.S. Pub. No. 2015/0173773, which is hereby incorporated by reference, discloses a catheter with various electrical mechanisms for detaching a distal end of a catheter. In one embodiment, electrical wires within the catheter body supply electrical current to heater coils located near the catheter's distal end. When current is supplied, the heater coils activate to melt or break a portion of the catheter and releasing its distal end.
In yet another example U.S. Pat. No. 9,808,599, which is hereby incorporated by reference, discloses a catheter having electrical contacts within the interior passage of the catheter. Electrical current can be delivered to these contacts to cause a segmented implant within the catheter to separate or a bimetal guidewire to curve in a specific direction.
In one embodiment, a powered catheter and/or powered catheter system is described. The catheter includes a catheter hub with one set of contact components that are configured to connect to a mating cable with a corresponding second set of contact components. The mating cable can be part of another device, such as a controller or power source.
In one embodiment, a powered catheter and/or powered catheter system is described. The catheter includes a catheter hub with one set of contact components, and a number of wires connected to the catheter hub which connect to a distal portion of the catheter. The catheter hub contact components are configured for connection to a mating cable with a corresponding second set of contact components. The mating cable can be part of another device, such as a controller or power source. The interface between the mating cable and the catheter hub can be used to transfer current, signals, and/or or data from the device which the mating cable is connected to a distal portion of the catheter.
In one embodiment, a data transfer system is described which enables communication between a catheter and an external device. The catheter includes a hub with a first set of contact components. The data transfer system includes a mating cable with a second set of contacts; the mating cable connects the external device to the catheter hub and allows a signal or data to pass between the catheter hub and the external device. The catheter can include wires to transfer the signal or data from the catheter hub to another portion of the catheter.
In one embodiment, a powered catheter hub is described. The powered catheter hub includes one or more contact components.
In one embodiment, a powered catheter and/or powered catheter system is described. The powered catheter includes a catheter hub with one or more contact components, and one or more wires connected to the catheter hub which are configured to carry data or a signal from the catheter hub to another portion of the catheter.
In one embodiment, a detachment system for a therapeutic device (e.g. embolic coils) is described. The detachment system includes an external grip assembly. A mating cable connects the external grip assembly to a catheter hub, where the catheter hub and mating cable are each configured with contacts such that signals or data are transferred between the external grip assembly and the catheter hub. A series of wires are connected to the catheter hub such that data or signals can be transferred from the catheter hub to a distal portion of the catheter. The proximal end of a therapeutic device can be placed within the external grip assembly, and the external grip assembly can communicate with a distal portion of the catheter to convey a detachment sequence in order to detach a portion of the therapeutic device.
These and other aspects, features and advantages of which embodiments of the invention are capable of will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
Catheters are utilized in many interventional procedures as a conduit used to deliver a variety of therapeutic agents such as medical devices to a treatment site. While some catheters are configured as simple tubular conduits that passively deliver therapeutic agents and/or devices, other catheters are further configured with components requiring electrical power.
The following embodiments are directed to a system for conveying power and/or data between a catheter and a power interface. This system can allow for a variety of different catheter functionalities, including electrically interacting with therapeutic devices delivered through said catheter, providing imaging, or providing sensor information about a treatment area.
Since catheters are often used in interventional procedures, fluids such as blood and saline can be present. Since liquid exposure can affect or otherwise interrupt a circuit path, it is important to isolate the electrically conductive components. However, catheters are typically connected to a power/data interface either prior to or during a procedure, and therefore should include an electrical connector that is both easy to use and that resists fluid infiltration to its electrical contacts. The following embodiments address these issues. It should be further noted that while several different embodiments are described below, individual features of these components can also be used on other disclosed embodiments. In other words, each of the individual features described can be mixed and matched on any of the various embodiments.
As described further in this specification, the interface connector assembly 108 and catheter connector assembly 106 may include magnetic attachment mechanisms, frictional/mechanical attachment mechanisms, or combinations of both. The embodiment shown in
As best seen in
In the present embodiment, the catheter connector assembly 106 only includes a single sidewall adjacent to the backwall 118. To help prevent the interface connector assembly 108 from sliding sideways (i.e., to the left when facing the backwall 118), the lower vertical surface of the catheter connector assembly 106 includes two vertical ridges 116 on either side of the magnet 113. These ridges 116 mate with two similarly sized/positioned grooves 121 within an elevated portion 119 of the interface connector assembly 108. Optionally, these grooves 121 can be sized and otherwise configured to provide some friction with the ridges 116 when engaged to help frictionally retain the interface connector assembly 108 on the catheter connector assembly 106.
When the interface connector assembly 108 is properly connected to the catheter connector assembly 106, a plurality of catheter electrical contacts 114 are aligned and put into contact with a plurality of interface electrical contacts 117. The present embodiment depicts four contacts 114 that contact another four contacts 117 to exchange power and/or data signals between the catheter 104 and the interface 110. However, other numbers of contacts on each assembly 106,108 are also possible, depending on the functionality of the catheter 104. For example, 2, 3, 4, 5, 6, 7, and 18 individual contacts are possible.
As seen best in
In one embodiment shown in
As discussed above, the powered catheter hub can be used as part of a broader electrical communication system enabling communication between an external interface connected 110 to the catheter hub via interface connector 108, and a distal end of the catheter. For example, the distal end of the catheter can include a pair of polarized contacts which electrically interact with an implant (e.g., embolic coil) delivery system. External interface 110 can include a battery which provides the voltage source and connects to the polarized contacts on the catheter through the interface connector 108 and catheter connector 106. The embolic coil delivery system includes a pair of conductive sleeves which align with the polarized catheter contacts to complete a circuit, thereby supplying current to a heater on the coil pusher to detach the coil from the coil pusher. Where four catheter connector contacts 114 and four corresponding interface connector contacts 117 are used, two contacts can be used for the positive and negative DC battery source leaving two additional contacts either for redundancy, or to power another distal catheter system (e.g., imaging system, pressure or temperature monitoring, ablation system, etc.), or as a feedback loop to confirm that detachment has taken place. In this way, the multiple contacts allow for multiple catheter processes to take place, or alternatively allow for redundancy to guard against failure, or allow for confirmation via a feedback loop. Obviously, more contacts (e.g., more than 4 contacts) would facilitate more catheter operations or more redundancy. Though this example primarily highlighted an illustrative concept for an embolic coil detachment system, various other catheter operations (e.g., imaging, pressure/temperature sensing, ablation, cooling, measurement, detachment system for detaching the distal tip of the catheter, etc.) are also possible. In various other examples, two of the connector contact points can provide electrical communication for current, data, or signals while two of the other connector contacts points can act like a capacitor for various purposes (e.g., low power sensing). Additionally, the two distal catheter contacts can further be combined with a distal capacitor system for a catheter-mounted low power sensing application.
In other examples, external interface 110 is a broader computing system or “brain” that computationally sends signals to a distal portion of the catheter or interprets received signals from the distal portion of the catheter. For example, the external interface 110 could be used to send acoustic signals outside of the catheter to then recreate and display an image of the target therapeutic area based on recreating an image from the received acoustic signals. For another example, the external interface or “brain” would use resistance or other measurements to determine when an embolic coil detachment contacts are aligned correctly with the catheter's contacts, convey a signal (e.g., a light) to the user, and the user would take an action (e.g., press a button) on the external interface to send an impulse to the distal end of the catheter to detach the coil.
In another embodiment shown in
Referring to
The catheter connector assembly 106 can be located at a number of positions on the catheter hub. For example,
While the electrical contacts on either the interface connector assembly or the catheter connector assembly can be flat, either of these contacts can also be raised. For example,
The magnets of the interface connector assembly and/or the catheter connector assembly can be flat, an elevated shape, or a depressed shape. For example,
The catheter connector assembly and the interface connector assembly can include structures that frictionally engage each other, either in addition to the magnets or instead of the magnets. For example,
In addition to the use of magnets and/or fictional engagement structures, other connector shapes can additional be used to help prevent fluid from reaching the electrical contacts. For example,
In another embodiment, a hydrophobic coating can be applied to the regions surrounding the electrical contacts and the magnets to help repel the ingress of fluid. For example, such a coating may include composite/nano-composite materials such as manganese oxide polystyrene, zinc oxide polystyrene, silica or fluoropolymer coatings. Such a coating may also include polymeric materials such as heptadecafluorohexyl-trimethoxysilane, polyhexafluoropropylene, polytetrafluoroethylene (PTFE); these polymeric coatings may be further engineered or chemically altered to further augment their hydrophobic properties.
To further prevent the intrusion of fluid on the electrical contacts, the hub 102 may also include a cover 240 that is attached to the body of the hub 102 via a retaining filament 242, as seen in
As previously discussed with regard to
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/901,720 filed Feb. 21, 2018 entitled electrical Catheter, which claims benefit of and priority to U.S. Provisional Application Ser. No. 62/461,673 filed Feb. 21, 2017 entitled Electrical Catheter, both of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
7255693 | Johnston et al. | Aug 2007 | B1 |
7311526 | Rohrbach et al. | Dec 2007 | B2 |
8497953 | Miyamoto et al. | Jul 2013 | B2 |
9119551 | Qi et al. | Sep 2015 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
10122116 | Troufflard et al. | Nov 2018 | B2 |
10348027 | Zhao | Jul 2019 | B2 |
20030045134 | Downing | Mar 2003 | A1 |
20090240121 | Bickoff | Sep 2009 | A1 |
20090275815 | Bickoff | Nov 2009 | A1 |
20100069855 | Ross | Mar 2010 | A1 |
20110171837 | Hardisty et al. | Jul 2011 | A1 |
20130296729 | Datta | Nov 2013 | A1 |
20140180280 | Sigmon, Jr. | Jun 2014 | A1 |
20150094713 | Pham | Apr 2015 | A1 |
20150173773 | Bowman et al. | Jun 2015 | A1 |
20160345904 | Bowman | Dec 2016 | A1 |
20170172652 | Govari et al. | Jun 2017 | A1 |
20190070390 | Isaacson | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
104518351 | Apr 2015 | CN |
WO2001036017 | May 2001 | WO |
WO2017009539 | Jan 2017 | WO |
Entry |
---|
European Patent Office, Supplementary Extended European Search Report dated Nov. 9, 2020 in European Patent Application No. 18757321.7, 9 pages. |
WIPO, U.S. International Search Authority, International Search Report and Written Opinion dated May 3, 2018 in International Patent Application No. PCT/US2018/019032, 10 pages. |
Samtec, “Tolc Series Datasheet”, Samtec Catalog, Oct. 10, 2017, accessed Apr. 4, 2018, url <suddendocs.samtec.com/catalog_english/tolc.pdf>. |
China Patent Office, Office Action dated Nov. 22, 2023 with English translation in Chinese Patent Application No. 2022103753977, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20210322724 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62461673 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15901720 | Feb 2018 | US |
Child | 17348571 | US |