Electrical components for photovoltaic systems

Information

  • Patent Grant
  • 12095415
  • Patent Number
    12,095,415
  • Date Filed
    Thursday, March 24, 2022
    2 years ago
  • Date Issued
    Tuesday, September 17, 2024
    3 months ago
Abstract
A system includes at least one photovoltaic module installed on a roof deck, at least one electrical connector electrically connected to the photovoltaic module, and at least one electrical component electrically and removably connected to the electrical connector. The electrical component includes a housing and an electronic component located within the housing. The electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter. The electrical component is separate from the photovoltaic module and is configured to be disconnected from the electrical connector while the photovoltaic module remains installed on the roof deck.
Description
FIELD OF THE INVENTION

The present invention relates to electrical components and, more particularly, electrical components having replaceable electronic components for photovoltaic systems.


BACKGROUND

Photovoltaic systems having solar panels are commonly installed on roofing of structures. What is needed are low profile electrical components with replaceable electronic components configured for use with photovoltaic systems installed on roof decks.


SUMMARY

In some embodiments, a system includes at least one photovoltaic module installed on a roof deck; at least one electrical connector electrically connected to the at least one photovoltaic module; and at least one electrical component electrically and removably connected to the at least one electrical connector, wherein the at least one electrical component includes a housing, and an electronic component located within the housing, wherein the electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter, wherein the at least one electrical component is separate from the at least one photovoltaic module, and wherein the at least one electrical component is configured to be disconnected from the at least one electrical connector while the at least one photovoltaic module remains installed on the roof deck.


In some embodiments, the electronic component is overmolded to the housing. In some embodiments, the housing includes a base and a cap removably attached to the base. In some embodiments, the electronic component is attached to the cap, and wherein the electronic component is removably attached to the base. In some embodiments, the cap includes at least one tab and the base includes at least one slot that is sized and shaped to removably receive the at least one tab. In some embodiments, the at least one tab includes a plurality of tabs and the at least one slot includes a plurality of slots each of which is sized and shaped to removably receive a corresponding one of the plurality of tabs. In some embodiments, the system further includes an O-ring attached to the cap. In some embodiments, the system further includes a gel located within the at least one slot. In some embodiments, the housing has a thickness of 1 mm to 30 mm.


In some embodiments, the system further includes at least one wireway installed proximate to an end of the at least one photovoltaic module, and wherein the at least one electrical component is located within the at least one wireway. In some embodiments, the system further includes at least one cover, wherein the at least one cover is removably attached to the at least one wireway, wherein the at least one cover includes an interior surface, wherein the at least one wireway includes an exterior surface, wherein the cap is attached to the interior surface of the at least one cover, and wherein the base is attached to the exterior surface of the at least one wireway.


In some embodiments, the at least one photovoltaic module includes a plurality of photovoltaic modules, and wherein the at least one electrical component includes a plurality of electrical components. In some embodiments, the at least one photovoltaic module includes first layer. In some embodiments, the first layer includes a polymer. In some embodiments, the polymer is selected from the group consisting of thermoplastic polyolefin (TPO), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), or polyimide; polyvinyl chloride (PVC); ethylene propylene diene monomer (EPDM) rubber; silicone rubber; fluoropolymers-ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), and blends thereof. In some embodiments, the first layer includes a head lap, and wherein the at least one electrical component is located on the head lap. In some embodiments, at least a portion of a first one of the photovoltaic modules overlays at least a portion of the head lap of a second one of the photovoltaic modules, and wherein the at least one electrical component is located intermediate the at least a portion of the first one of the photovoltaic modules and the head lap of the second one of the photovoltaic modules. In some embodiments, the first layer includes a step flap, and wherein the at least one electrical component is located on the step flap. In some embodiments, at least a portion a first one of the photovoltaic modules overlays at least a portion of the step flap of a second one of the photovoltaic modules, and wherein the at least one electrical component is located intermediate the at least a portion of the first one of the photovoltaic modules and the step flap of the second one of the photovoltaic modules.


In some embodiments, a system includes at least one photovoltaic module installed on a roof deck; at least one electrical connector electrically connected to the at least one photovoltaic module; and at least one electrical component housing electrically connected to the at least one electrical connector, wherein the at least one electrical component housing includes a base and a cap, wherein the cap (a) is electrically and removably attached to the base, and (b) includes at least one electronic component located within the cap, and wherein the at least one electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of an embodiment of an electrical component;



FIG. 2 is schematic view of another embodiment of an electrical component;



FIG. 3 is a cross-sectional view, taken along section lines A-A and looking in the direction of the arrows, of the electrical component shown in FIG. 2;



FIG. 4 is a schematic view of the electrical component shown in FIG. 2, with an electronic component employed by the electrical component removed from an associated housing;



FIG. 5 is a schematic view of another embodiment of an electrical component, with an electronic component employed by the electrical component removed from an associated housing;



FIG. 6 is a schematic view of another embodiment of an electrical component, with an electronic component employed by the electrical component removed from an associated housing;



FIG. 7A is a top perspective schematic view of an embodiment of a photovoltaic system installed on a roof deck and including a plurality of embodiments of electrical components;



FIGS. 7B and 7C are side cross sectional views of embodiments of a wireway and cover;



FIGS. 8 and 9 are top plan schematic views of embodiments of a photovoltaic module including embodiments of an electrical component; and



FIGS. 10 and 11 are a top perspective and side elevational schematic views of an embodiment of a photovoltaic system installed on a roof deck and including a plurality of embodiments of electrical components.





DETAILED DESCRIPTION

Referring to FIG. 1, in an embodiment, an electrical component 10 includes a housing 12 and an electronic component 14 located within the housing 12. In some embodiments, the electronic component 14 is overmolded with the housing 12. In some embodiments, the electronic component 14 is embedded within the housing 12. As used herein, the term “embedded” means partially or fully enveloped or enclosed, and with respect to certain embodiments of the electrical component 10, the electronic component 14 is fully enveloped by or enclosed within the housing 12, or partially enveloped by or enclosed within the housing 12.


In some embodiments, an entire exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 50% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 75% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 80% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 85% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 90% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 95% to 100% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 75% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 80% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 85% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 90% to 95% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 75% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 80% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 85% to 90% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 75% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 80% to 85% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 80% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 80% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 80% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 80% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% to 80% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 75% to 80% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 75% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 75% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 75% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 75% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% to 75% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 70% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 70% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 70% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% to 70% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% to 65% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 65% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% to 65% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 50% to 60% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% to 60% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 50% to 55% of an exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, 50% of an exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 55% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 60% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 65% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 70% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 75% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 80% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 85% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 90% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 95% of the exterior surface area of the electronic component 14 is embedded within the housing 12. In some embodiments, 100% of the exterior surface area of the electronic component 14 is embedded within the housing 12.


In some embodiments, the electronic component 14 includes a power optimizer. In some embodiments, the electronic component 14 includes an inverter. In some embodiments, the electronic component 14 includes a diode. In some embodiments, the electronic component 14 includes a rapid shutdown device (RSD). In some embodiments, the electronic component 14 is a component of a junction box.


In some embodiments, the housing 12 includes a first end 16 and a second end 18 opposite the first end 16. In some embodiments, a first connector 20 extends from the first end 16. In some embodiments, a second connector 22 extends from the second end 18. In some embodiments, the first connector 20 is configured to be connected to a first mating connector 24. In some embodiments, the second connector 22 is configured to be connected to a second mating connector 26. In some embodiments, the first mating connector 24 is electrically connected to a photovoltaic system. In some embodiments, the second mating connector 26 is electrically connected to a photovoltaic system.


In some embodiments, the housing 12 has a thickness T1 of 1 mm to 30 mm. In some embodiments, the housing 12 has a thickness T1 of 5 mm to 30 mm. In some embodiments, the housing 12 has a thickness T1 of 10 mm to 30 mm. In some embodiments, the housing 12 has a thickness T1 of 15 mm to 30 mm. In some embodiments, the housing 12 has a thickness T1 of 20 mm to 30 mm. In some embodiments, the housing 12 has a thickness T1 of 25 mm to 30 mm. In some embodiments, the housing 12 has a thickness T1 of 1 mm to 25 mm. In some embodiments, the housing 12 has a thickness T1 of 5 mm to 25 mm. In some embodiments, the housing 12 has a thickness T1 of 10 mm to 25 mm. In some embodiments, the housing 12 has a thickness T1 of 15 mm to 25 mm. In some embodiments, the housing 12 has a thickness T1 of 20 mm to 25 mm.


In some embodiments, the housing 12 has a thickness T1 of 1 mm to 20 mm. In some embodiments, the housing 12 has a thickness T1 of 5 mm to 20 mm. In some embodiments, the housing 12 has a thickness T1 of 10 mm to 20 mm. In some embodiments, the housing 12 has a thickness T1 of 15 mm to 20 mm. In some embodiments, the housing 12 has a thickness T1 of 1 mm to 15 mm. In some embodiments, the housing 12 has a thickness T1 of 5 mm to 15 mm. In some embodiments, the housing 12 has a thickness T1 of 10 mm to 15 mm. In some embodiments, the housing 12 has a thickness T1 of 1 mm to 10 mm. In some embodiments, the housing 12 has a thickness T1 of 5 mm to 10 mm. In some embodiments, the housing 12 has a thickness T1 of 1 mm to 5 mm.


In some embodiments, the housing 12 has a thickness T1 of 1 mm. In some embodiments, the housing 12 has a thickness T1 of 5 mm. In some embodiments, the housing 12 has a thickness T1 of 10 mm. In some embodiments, the housing 12 has a thickness T1 of 15 mm. In some embodiments, the housing 12 has a thickness T1 of 20 mm. In some embodiments, the housing 12 has a thickness T1 of 25 mm. In some embodiments, the housing 12 has a thickness T1 of 30 mm.


In some embodiments, the first connector 20 is a flat ribbon cable. In some embodiments, the second connector 22 is a flat ribbon cable. In some embodiments, the first connector 20 and the second connector 22 are integrated with the housing 12. In some embodiments, the first connector 20 and the second connector 22 are electrically connected to the electronic component 14. In some embodiments, the first connector 20 and the second connector 22 are overmolded into the housing 12.


In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 6 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 5 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 4 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 3 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm to 2 mm.


In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 6 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 5 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 4 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm to 3 mm.


In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 6 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 5 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm to 4 mm.


In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm to 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm to 6 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm to 5 mm.


In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 5 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 5 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 5 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 5 mm to 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 5 mm to 6 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 6 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 6 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 6 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 6 mm to 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 7 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 7 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 7 mm to 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 8 mm to 10 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 8 mm to 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 9 mm to 10 mm.


In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 1 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 2 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 3 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 4 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 5 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 6 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 7 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 8 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 9 mm. In some embodiments, each of the first connector 20 and the second connector 22 has a thickness T2 of 10 mm.


In some embodiments, the electrical component 10 is configured to be electrically connected to at least one photovoltaic module. In some embodiments, the electrical component 10 is configured to be electrically connected to a plurality of photovoltaic modules. In some embodiments, the electrical component 10 is a component that is separate and distinct from the photovoltaic module. In some embodiments, the electrical component 10 is not embedded within the photovoltaic module. In some embodiments, the electrical component 10 is configured to be disconnected from the first mating connector 24 and the second mating connector 26 while the photovoltaic module remains installed on the roof deck. In some embodiments, if the electronic component 14 requires an upgrade, repair or replacement, a user may disconnect the electrical component 10 from the first mating connector 24 and the second mating connector 26 and replace the electrical component 10 with a new electrical component, or have the electrical component 10 repaired and reinstalled, without the need to remove or uninstall the photovoltaic module from the roof deck. In some embodiments, an upgrade of the electronic component 10 may include a newer or latest model of same.



FIGS. 2 through 4 show an embodiment of an electrical component 110. The electrical component 110 includes a structure and function similar to those of the electrical component 10 except as illustrated and described below. In some embodiments, the electrical component 110 includes a housing 112 having a base 113 and a cap 115 removably attached to the base 113. In some embodiments, an electronic component 114 is attached to the cap 115. In some embodiments, the electronic component 114 is removably attached to the cap 115. In some embodiments, the electronic component 114 is attached to the cap 115 by a fastener. In some embodiments, the electronic component 114 is attached to the cap 115 by an adhesive. In some embodiments, the electronic component 114 is attached to the cap 115 by ultrasonic welding. In some embodiments, the cap 115 includes a cover 117 having a first surface 119 and at least one tab 121 extending outwardly from the first surface 119. In some embodiments, the at least one tab 121 includes a plurality of the tabs 121. In some embodiments, each of the tabs 121 includes a hook member 123. In some embodiments, the electronic component 114 is located intermediate the tabs 121.


In some embodiments, the housing 112 is made from a thermoplastic material. In some embodiments, the housing 112 is made from poly(p-phenylene oxide)/poly(p-phenylene ether) (PPE). In some embodiments, the housing 112 is made from fiber-reinforced plastic (FRP). In some embodiments, the housing 112 is made from fiberglass reinforced polymers.


In some embodiments, the base 113 includes a pair of elongated slots 125, 127 extending longitudinally from a first end to a second end of the base 113. In some embodiments, tab portions 129 extend within each of the slots 125, 127. In some embodiments, the slots 125, 127 are sized and shaped to removably receive a corresponding one of the pair of tabs 121 of the cap 115, and the each of the tab portions 129 is sized and shaped to engage removably a corresponding one of the hook members 123 of the tabs 121. In some embodiments, the tabs 121 are pin connectors and the slots 125, 127 are sockets. In some embodiments, the tabs 121 and the slots 125, 127 include a blade-type connection system. In some embodiments, the tabs 121 and the slots 125, 127 include a spade or fork terminal connection system. In some embodiments, the tabs 121 and the slots 125, 127 include a universal serial bus (USB) connection system. In some embodiments, if the electronic component 114 requires an upgrade, repair or replacement, a user may remove the cap 115 which includes the electronic component 114, from the base 113 without the need to remove the housing 112 (e.g., the base 113) of the electrical component 110 from mating connectors 124, 126 or to remove or uninstall the photovoltaic module. In some embodiments, a user may upgrade or replace the electronic component 114 with a new or upgraded electronic component, or a repaired electronic component 114. In some embodiments, the upgrade to the electronic component 114 may be the result of changes, revisions or updates in governmental or industry standards, codes, and guidelines for roofing systems, photovoltaic systems, electronic systems, and/or electrical systems.


Referring to FIG. 5, in an embodiment, the electrical component 110 includes an O-ring 131 positioned on the cap 115. In some embodiments, the O-ring 131 resists water ingress within the housing 112 of the electrical component 110. In some embodiments, the O-ring 131 is a silicone O-ring. Referring to FIG. 6, in an embodiment, the electrical component 110 includes a gel 133. In some embodiments, the gel 133 is a silicone gel. In some embodiments, the slots 125, 127 of the housing 112 are filled with the gel 133. In some embodiments, the gel 133 resists water ingress within the housing 112 of the electrical component 110.


Referring to FIGS. 7A and 7B, in some embodiments, a roofing system 200 includes a plurality of photovoltaic modules 202 installed on a roof deck 204, and at least one wireway 206 installed on the roof deck 204 proximate to the photovoltaic modules 202. In some embodiments, the at least one wireway 206 is installed intermediate the plurality of photovoltaic modules 202. In some embodiments, the at least one wireway 206 is installed proximate to inner ends of the photovoltaic modules 202. In some embodiments, the at least one wireway 206 is installed proximate to outer ends of the photovoltaic modules 202.


In some embodiments, the at least one wireway 206 is rectangular in shape. In some embodiments, the at least one wireway 206 is sized and shaped to receive at least one electrical component 210. In some embodiments, the at least one wireway 206 is sized and shaped to receive a plurality of the electrical components 210. In some embodiments, each of the electrical components 210 has a structure and function similar to those of the electrical component 10. In other embodiments, each of the electrical components 210 has a structure and function similar to those of the electrical component 110. In some embodiments, the electrical components 210 are electrically connected to one another. In some embodiments, the electrical component 210 is electrically connected to one of the photovoltaic modules 202. In some embodiments, the electrical component 210 is electrically connected to each of the photovoltaic modules 202.


Referring to FIG. 7B, in some embodiments, the at least one wireway 206 includes a cover 208. In some embodiments, the cover 208 is removably attached to the at least one wireway 206. In some embodiments, the at least one wireway 206 includes a single wireway installed proximate to the inner end of each of the plurality of photovoltaic modules 202. In some embodiments, the at least one wireway 206 includes a single wireway installed proximate to the outer end of each of the plurality of photovoltaic modules 202. In some embodiments, the cover 208 covers the electrical components 210 when installed within the wireway 206. In some embodiments, a base 213 of the electrical component 210 is juxtaposed with a surface 207 of the wireway 206. In some embodiments, a base 213 of the electrical component 210 is located on the surface 207 of the wireway 206. In some embodiments, the base 213 is attached to the surface 207 of the wireway 206. In some embodiments, the base 213 is attached to the surface 207 of the wireway 206 by an adhesive. In some embodiments, the base 213 is ultrasonically welded to the surface 207. In some embodiments, the base 213 is heat welded to the surface 207. In some embodiments, the base 213 is thermally bonded to the surface 207. In some embodiments, the base 213 is not adhered or attached to the surface 207. In some embodiments, a cap 215 including the electronic component 214 is removably attached to the base 213.


Referring to FIG. 7C, in some embodiments, the cap 215 is attached to an interior surface 209 of the cover 208. In some embodiments, the cap 215 is attached to the interior surface 209 of the wireway 206 by an adhesive. In some embodiments, the cap 215 is ultrasonically welded to the interior surface 209. In some embodiments, the cap 215 is heat welded to the interior surface 209. In some embodiments, the cap 215 is thermally bonded to the interior surface 209. In some embodiments, the cap 215 is not adhered or attached to the interior surface 209. In some embodiments, the cap 215 is removably attached to the base 213 when the cover 208 is installed on the surface 207 of the wireway 206. In some embodiments, the electronic component 214 is electronically connected to the photovoltaic system when the when the cover 208 is installed on the surface 207 of the wireway 206. In some embodiments, the electronic component 214 is removable from the cap 215 when the cover 208 in uninstalled from the wireway 206.


In some embodiments, the wireway 206 includes a length L1 of 100 mm to 450 mm. In some embodiments, the wireway 206 includes a length L1 of 100 mm to 400 mm. In some embodiments, the wireway 206 includes a length L1 of 100 mm to 350 mm. In some embodiments, the wireway 206 includes a length L1 of 100 mm to 300 mm. In some embodiments, the wireway 206 includes a length L1 of 100 mm to 250 mm. In some embodiments, the wireway 206 includes a length L1 of 100 mm to 200 mm. In some embodiments, the wireway 206 includes a length L1 of 100 mm to 150 mm.


In some embodiments, the wireway 206 includes a length L1 of 150 mm to 450 mm. In some embodiments, the wireway 206 includes a length L1 of 150 mm to 400 mm. In some embodiments, the wireway 206 includes a length L1 of 150 mm to 350 mm. In some embodiments, the wireway 206 includes a length L1 of 150 mm to 300 mm. In some embodiments, the wireway 206 includes a length L1 of 150 mm to 250 mm. In some embodiments, the wireway 206 includes a length L1 of 150 mm to 200 mm.


In some embodiments, the wireway 206 includes a length L1 of 200 mm to 450 mm. In some embodiments, the wireway 206 includes a length L1 of 200 mm to 400 mm. In some embodiments, the wireway 206 includes a length L1 of 200 mm to 350 mm. In some embodiments, the wireway 206 includes a length L1 of 200 mm to 300 mm. In some embodiments, the wireway 206 includes a length L1 of 200 mm to 250 mm.


In some embodiments, the wireway 206 includes a length L1 of 250 mm to 450 mm. In some embodiments, the wireway 206 includes a length L1 of 250 mm to 400 mm. In some embodiments, the wireway 206 includes a length L1 of 250 mm to 350 mm. In some embodiments, the wireway 206 includes a length L1 of 250 mm to 300 mm.


In some embodiments, the wireway 206 includes a length L1 of 300 mm to 450 mm. In some embodiments, the wireway 206 includes a length L1 of 300 mm to 400 mm. In some embodiments, the wireway 206 includes a length L1 of 300 mm to 350 mm. In some embodiments, the wireway 206 includes a length L1 of 350 mm to 450 mm. In some embodiments, the wireway 206 includes a length L1 of 350 mm to 400 mm. In some embodiments, the wireway 206 includes a length L1 of 400 mm to 450 mm.


In some embodiments, the wireway 206 includes a width W1 of 100 mm to 200 mm. In some embodiments, the wireway 206 includes a width W1 of 100 mm to 175 mm. In some embodiments, the wireway 206 includes a width W1 of 100 mm to 150 mm. In some embodiments, the wireway 206 includes a width W1 of 100 mm to 125 mm.


In some embodiments, the wireway 206 includes a width W1 of 125 mm to 200 mm. In some embodiments, the wireway 206 includes a width W1 of 125 mm to 175 mm. In some embodiments, the wireway 206 includes a width W1 of 125 mm to 150 mm. In some embodiments, the wireway 206 includes a width W1 of 150 mm to 200 mm. In some embodiments, the wireway 206 includes a width W1 of 150 mm to 175 mm. In some embodiments, the wireway 206 includes a width W1 of 175 mm to 200 mm.


In some embodiments, the wireway 206 includes a height H1 of 5 mm to 35 mm. In some embodiments, the wireway 206 includes a height H1 of 5 mm to 30 mm. In some embodiments, the wireway 206 includes a height H1 of 5 mm to 25 mm. In some embodiments, the wireway 206 includes a height H1 of 5 mm to 20 mm. In some embodiments, the wireway 206 includes a height H1 of 5 mm to 15 mm. In some embodiments, the wireway 206 includes a height H1 of 5 mm to 10 mm. In some embodiments, the wireway 206 includes a height H1 of 10 mm to 35 mm. In some embodiments, the wireway 206 includes a height H1 of 10 mm to 30 mm. In some embodiments, the wireway 206 includes a height H1 of 10 mm to 25 mm. In some embodiments, the wireway 206 includes a height H1 of 10 mm to 20 mm. In some embodiments, the wireway 206 includes a height H1 of 10 mm to 15 mm.


In some embodiments, the wireway 206 includes a height H1 of 15 mm to 35 mm. In some embodiments, the wireway 206 includes a height H1 of 15 mm to 30 mm. In some embodiments, the wireway 206 includes a height H1 of 15 mm to 25 mm. In some embodiments, the wireway 206 includes a height H1 of 15 mm to 20 mm. In some embodiments, the wireway 206 includes a height H1 of 20 mm to 35 mm. In some embodiments, the wireway 206 includes a height H1 of 20 mm to 30 mm. In some embodiments, the wireway 206 includes a height H1 of 20 mm to 25 mm. In some embodiments, the wireway 206 includes a height H1 of 25 mm to 35 mm. In some embodiments, the wireway 206 includes a height H1 of 25 mm to 30 mm. In some embodiments, the wireway 206 includes a height H1 of 30 mm to 35 mm.


In some embodiments, the wireway 206 includes a height H1 of 5 mm. In some embodiments, the wireway 206 includes a height H1 of 10 mm. In some embodiments, the wireway 206 includes a height H1 of 15 mm. In some embodiments, the wireway 206 includes a height H1 of 20 mm. In some embodiments, the wireway 206 includes a height H1 of 25 mm. In some embodiments, the wireway 206 includes a height H1 of 30 mm. In some embodiments, the wireway 206 includes a height H1 of 35 mm.


In some embodiments, the wireway 206 is made from a polymeric material. In some embodiments, the wireway 206 is made from polypropylene. In some embodiments, the wireway 206 is made from polyethylene. In some embodiments, the wireway 206 is made from metal. In some embodiments, the wireway 206 is made from aluminum.


In some embodiments, the at least one wireway 206 is moisture resistant. As used herein, the term “moisture resistant” means having a water transmission rate of less than or equal to 0.05 U.S. perms, as measured by ASTM E 96, Procedure B— Standard Test Methods for Water Vapor Transmission of Materials. In some embodiments, the wireway 206 withstands walking loads/step resistance that conforms to standards under UL 3741 test standards (UL Standard for Safety Photovoltaic Hazard Control). In some embodiments, the wireway 206 includes an axe impact resistance that conforms to standards under UL 3741 test standards. In some embodiments, the wireway 206 includes a body fall resistance that conforms to standards under UL 3741 test standards.


Referring to FIGS. 8 through 11, in an embodiment, a roofing system 300 includes a plurality of photovoltaic modules 302 installed on a roof deck 304. In some embodiments, each of the photovoltaic modules 302 includes a first layer 303 and a second layer 305 overlaying the first layer 303. In some embodiments, the first layer 303 includes a head lap 307. In some embodiments, the second layer 305 includes at least one solar cell 309. In some embodiments, the at least one solar cell 309 includes a plurality of the solar cells 309. In some embodiments, at least one of the plurality of photovoltaic modules 302 overlays at least the head lap 307 of another of the plurality of photovoltaic modules 302. In some embodiments, the first layer 303 includes a first step flap 311 adjacent an end 315 of the second layer 305 and a second step flap 313 adjacent an opposite end 317 of the second layer 305. In some embodiments, the first step flap 311 of at least one of the plurality of photovoltaic modules 302 overlays at least the second step flap 313 of another of the plurality of photovoltaic modules 302. In some embodiments, the second step flap 313 of at least one of the plurality of photovoltaic modules 302 overlays at least the first step flap 311 of another of the plurality of photovoltaic modules 302.


In some embodiments, each of the first layer 303 and the second layer 305 includes a polymer. In some embodiments, each of the first layer 303 and the second layer 305 includes thermoplastic polyolefin (TPO). In some embodiments, each of the first layer 303 and the second layer 305 includes a material selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), or polyimide; polyvinyl chloride (PVC); ethylene propylene diene monomer (EPDM) rubber; silicone fluoropolymers-ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), and blends thereof.


In some embodiments, the first layer 303 and the second layer 305 are laminated. In some embodiments, the second layer 305 is ultrasonically welded to the first layer 303. In some embodiments, the second layer 305 is heat welded to the first layer 303. In some embodiments, the second layer 305 is thermally bonded to the first layer 303.


In some embodiments, the first layer 303 has a thickness of 1 mm to 20 mm. In some embodiments, the first layer 303 has a thickness of 1 mm to 15 mm. In some embodiments, the first layer 303 has a thickness of 1 mm to 10 mm. In some embodiments, the first layer 303 has a thickness of 1 mm to 5 mm. In some embodiments, the first layer 303 has a thickness of 1 mm to 4 mm. In some embodiments, the first layer 303 has a thickness of 1 mm to 3 mm. In some embodiments, the first layer 303 has a thickness of 1 mm to 2 mm. In some embodiments, the first layer 303 has a thickness of 5 mm to 20 mm. In some embodiments, the first layer 303 has a thickness of 5 mm to 15 mm. In some embodiments, the first layer 303 has a thickness of 5 mm to 10 mm. In some embodiments, the first layer 303 has a thickness of 10 mm to 20 mm. In some embodiments, the first layer 303 has a thickness of 10 mm to 15 mm. In some embodiments, the first layer 303 has a thickness of 15 mm to 20 mm.


In some embodiments, the first layer 303 has a thickness of 1 mm. In some embodiments, the first layer 303 has a thickness of 1.5 mm. In some embodiments, the first layer 303 has a thickness of 2 mm. In some embodiments, the first layer 303 has a thickness of 2.5 mm. In some embodiments, the first layer 303 has a thickness of 3 mm. In some embodiments, the first layer 303 has a thickness of 3.5 mm. In some embodiments, the first layer 303 has a thickness of 4 mm. In some embodiments, the first layer 303 has a thickness of 4.5 mm. In some embodiments, the first layer 303 has a thickness of 5 mm. In some embodiments, the first layer 303 has a thickness of 10 mm. In some embodiments, the first layer 303 has a thickness of 15 mm. In some embodiments, the first layer 303 has a thickness of 20 mm. In some embodiments, the first layer 303 has a thickness of 25 mm. In some embodiments, the first layer 303 has a thickness of 30 mm.


In some embodiments, the plurality of photovoltaic modules 302 is installed directly to the roof deck 304. In some embodiments, each of the plurality of photovoltaic modules 302 is installed on the roof deck 304 by a plurality of fasteners. In some embodiments, the plurality of fasteners are installed through the head lap 307. In some embodiments, the plurality of fasteners includes a plurality of nails. In some embodiments, each of the plurality of photovoltaic modules 302 is installed on the roof deck 304 by an adhesive. In some embodiments, the roofing system 300 includes an underlayment layer installed on the roof deck 304. In some embodiments, the plurality of photovoltaic modules 302 overlay the underlayment layer.


In some embodiments, at least one electrical component 310 is electrically connected to a corresponding one of the plurality of photovoltaic modules 302. In some embodiments, the at least one electrical component 310 includes a plurality of electrical components 310. In some embodiments, the at least one electrical component 310 has a structure and function similar to the electrical component 10.


In some embodiments, the at least one electrical component 310 is located proximate to the head lap 307 of the corresponding one of the plurality of photovoltaic modules 302. In some embodiments, the at least one electrical component 310 is located on a surface of the head lap 307. In some embodiments, the at least one electrical component 310 is located on a surface of the head lap 307 proximate to the second layer 305.


In other embodiments, the at least one electrical component 310 has a structure and function similar to the electrical component 110. In some embodiments, the base 113 of the housing 112 of the at least one electrical component 310 is embedded within the head lap 307. As used herein, the term “embedded” means partially or fully enveloped or enclosed, and with respect to certain embodiments of the electrical component 310, the base 113 of the housing 112 is partially enveloped by or enclosed within the head lap 307. In some embodiments, the base 113 of the housing 112 is laminated with the head lap 307. In some embodiments, the base 113 of the housing 112 is attached to the head lap 307 by an adhesive. In some embodiments, the base 113 is ultrasonically welded to the head lap 307. In some embodiments, the base 113 is heat welded to the head lap 307. In some embodiments, the base 113 is thermally bonded to the head lap 307. In some embodiments, the base 113 is not adhered or attached to the head lap 307.


In some embodiments, the at least one electrical component 310 is located proximate to the first step flap 311 of the corresponding one of the plurality of photovoltaic modules 302. In some embodiments, the at least one electrical component 310 is located on a surface of the first step flap 311. In some embodiments, the at least one electrical component 310 is located on a surface of the first step flap 311 proximate to the second layer 305.


In some embodiments, the at least one electrical component 310 is located proximate to the second step flap 313 of the corresponding one of the plurality of photovoltaic modules 302. In some embodiments, the at least one electrical component 310 is located on a surface of the second step flap 313. In some embodiments, the at least one electrical component 310 is located on a surface of the second step flap 313 proximate to the second layer 305.


In other embodiments, the at least one electrical component 310 has a structure and function similar to the electrical component 110. In some embodiments, the base 113 of the housing 112 of the at least one electrical component 310 is embedded within the first step flap 311. In some embodiments, the base 113 of the housing 112 of the at least one electrical component 310 is embedded within the second step flap 313. As used herein, the term “embedded” means partially or fully enveloped or enclosed, and with respect to certain embodiments of the electrical component 310, the base 113 of the housing 112 is partially enveloped by or enclosed within the first step flap 311 or the second step flap 313, as applicable. In some embodiments, the base 113 of the housing 112 is laminated with the first step flap 311. In some embodiments, the base 113 of the housing 112 of the electrical component 310 is attached to the first step flap 311 by an adhesive. In some embodiments, the base 113 is ultrasonically welded to the first step flap 311. In some embodiments, the base 113 is heat welded to the first step flap 311. In some embodiments, the base 113 is thermally bonded to the first step flap 311. In some embodiments, the base 113 of the housing 112 is laminated with the second step flap 313. In some embodiments, the base 113 of the housing 112 of the electrical component 310 is attached to the second step flap 313 by an adhesive. In some embodiments, the base 113 is ultrasonically welded to the second step flap 313. In some embodiments, the base 113 is heat welded to the second step flap 313. In some embodiments, the base 113 is thermally bonded to the second step flap 313.


Referring to FIGS. 10 and 11, in an embodiment, the electrical component 310 of one of the plurality of photovoltaic modules 202 is located beneath the head lap 307 of the another overlaying one of the photovoltaic modules 202. In some embodiments, the electrical component 310 of one of the plurality of photovoltaic modules 202 located proximate to or on the first step flap 311 thereof is located beneath the second step flap 313 of the another overlaying one of the photovoltaic modules 202. In some embodiments, the electrical component 310 of one of the plurality of photovoltaic modules 202 located proximate to or on the second step flap 313 thereof is located beneath the first step flap 311 of the another overlaying one of the photovoltaic modules 202.

Claims
  • 1. A system, comprising: at least one photovoltaic module installed on a roof deck;at least one electrical connector electrically connected to the at least one photovoltaic module; andat least one electrical component electrically and mechanically connected to the at least one electrical connector,wherein the at least one electrical component is adjacent to the at least one photovoltaic module,wherein the at least one electrical component includes a housing, wherein the housing includes a base, wherein the base includes a first end and a second end opposite the first end, a first side extending from the first end to the second end, a second side opposite the first side and extending from the first end to the second end, a lower surface, an upper surface opposite the lower surface, a first slot in the upper surface proximate to the first side and a second slot in the upper surface proximate to the second side, wherein each of the first slot and the second slot extends longitudinally from the first end to the second end, wherein the base is electrically connected to the at least one photovoltaic module, and a cap, wherein the cap includes a first end and a second end opposite the first end of the cap, a first side extending from the first end of the cap to the second end of the cap, a second side extending from the first end of the cap to the second end of the cap, an upper surface, an inner surface opposite the upper surface of the cap, a first tab extending from the inner surface and proximate to the first side of the cap and a second tab extending from the inner surface and proximate to the second side of the cap, wherein each of the first tab and the second tab extends longitudinally from the first end of the cap to the second end of the cap, andan electronic component, wherein the electronic component is attached to the inner surface of the cap, wherein the electronic component is between the first tab and the second tab,wherein the cap is removably attached to the base such that the first slot and the second slot of the base are sized and shaped to removably receive a corresponding one of the first tab and the second tab of the cap,wherein the electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter,wherein the at least one electrical component is not mechanically mounted to the at least one photovoltaic module, andwherein the cap is moveable between:(a) an installed position, in which the cap is attached to the base and the electronic component is mated with and installed within the base, wherein the electronic component is concurrently mechanically and electrically connected to the base, and(b) a disconnected position, in which the cap is removed from the base and the electronic component is uninstalled and concurrently mechanically and electrically disconnected from the base, wherein when the cap is in its disconnected position, the base remains electrically connected to the at least one photovoltaic module, and wherein the at least one photovoltaic module remains installed on the roof deck.
  • 2. The system of claim 1, wherein the electronic component is overmolded to the housing.
  • 3. The system of claim 1, further comprising an O-ring attached to the cap.
  • 4. The system of claim 1, further comprising a gel located within the at least one of the first slot and the second slot.
  • 5. The system of claim 1, wherein the housing has a thickness of 1 mm to 30 mm.
  • 6. The system of claim 1, further comprising at least one wireway installed proximate to an end of the at least one photovoltaic module, and wherein the at least one electrical component is located within the at least one wireway.
  • 7. The system of claim 6, further comprising at least one cover, wherein the at least one cover is removably attached to the at least one wireway, wherein the at least one cover includes an interior surface, wherein the at least one wireway includes an exterior surface, wherein the cap is attached to the interior surface of the at least one cover, and wherein the base is attached to the exterior surface of the at least one wireway.
  • 8. The system of claim 1, wherein the at least one photovoltaic module includes a plurality of photovoltaic modules, and wherein the at least one electrical component includes a plurality of electrical components.
  • 9. The system of claim 1, wherein the at least one photovoltaic module includes first layer.
  • 10. The system of claim 9, wherein the first layer includes a polymer.
  • 11. The system of claim 10, wherein the polymer is selected from the group consisting of thermoplastic polyolefin (TPO), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), or polyimide; polyvinyl chloride (PVC); ethylene propylene diene monomer (EPDM) rubber; silicone rubber; fluoropolymers-ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), and blends thereof.
  • 12. The system of claim 9, wherein the first layer includes a head lap, and wherein the at least one electrical component is located on the head lap.
  • 13. The system of claim 12, wherein at least a portion of a first one of the photovoltaic modules overlays at least a portion of the head lap of a second one of the photovoltaic modules, and wherein the at least one electrical component is located intermediate the at least a portion of the first one of the photovoltaic modules and the head lap of the second one of the photovoltaic modules.
  • 14. The system of claim 9, wherein the first layer includes a step flap, and wherein the at least one electrical component is located on the step flap.
  • 15. The system of claim 14, wherein at least a portion a first one of the photovoltaic modules overlays at least a portion of the step flap of a second one of the photovoltaic modules, and wherein the at least one electrical component is located intermediate the at least a portion of the first one of the photovoltaic modules and the step flap of the second one of the photovoltaic modules.
  • 16. The system of claim 1, wherein the electronic component is not fully enclosed by the cap.
  • 17. The system of claim 1, wherein the electronic component is adjacent to the first tab and the second tab on the inner surface of the cap.
  • 18. The system of claim 1, wherein the at least one electrical connector includes a first electrical connector and a second electrical connector, wherein the at least one photovoltaic module includes a first photovoltaic module and a second photovoltaic module, wherein the first electrical connector is electrically connected to the first photovoltaic module, and wherein the second electrical connector is electrically connected to the second photovoltaic module.
  • 19. The system of claim 18, wherein the first electrical connector is connected to the first end of the base, and wherein the second electrical connector is connected to the second end of the base.
  • 20. The system of claim 18, wherein the electronic component includes a first end and a second end opposite the first end of the electronic component, wherein the first end of the electronic component is located proximate to the first end of the cap and the second end of the electronic component is located proximate to the second end of the cap.
  • 21. A system, comprising: at least one photovoltaic module installed on a roof deck;at least one electrical connector electrically connected to the at least one photovoltaic module; andat least one electrical component housing electrically and mechanically connected to the at least one electrical connector,wherein the at least one electrical component housing is adjacent to the at least one photovoltaic module,wherein the at least one electrical component housing is not mechanically mounted to the at least one photovoltaic module, wherein the at least one electrical component housing includes a base and a cap,wherein the base is electrically connected to the at least one photovoltaic module,wherein the base includes a first end and a second end opposite the first end,a first side extending from the first end to the second end,a second side opposite the first side and extending from the first end to the second end,a lower surface,an upper surface opposite the lower surface, a first slot in the upper surface proximate to the first side and a second slot in the upper surface proximate to the second side,wherein each of the first slot and the second slot extends longitudinally from the first end to the second end,wherein the base is electrically connected to the at least one photovoltaic module, and a cap, wherein the cap includes a first end and a second end opposite the first end of the cap, a first side extending from the first end of the cap to the second end of the cap, a second side extending from the first end of the cap to the second end of the cap, an upper surface, an inner surface opposite the upper surface of the cap, a first tab extending from the inner surface of the cap and proximate to the first side of the cap and a second tab extending from the inner surface and proximate to the second side of the cap, wherein each of the first tab and the second tab extends longitudinally from the first end to the second end, and at least one electronic component located within the cap, wherein the electronic component is between the first tab and the second tab,wherein the first slot and the second slot of the base is are sized and shaped to removably receive a corresponding one of the first tab and the second tab of the cap,wherein the cap is moveable between: a) an installed position, in which the cap is mated with the base and the at least one electronic component is concurrently mechanically and electrically installed within the base, andb) a disconnected position, in which the cap is concurrently mechanically and electrically disconnected from the base, wherein, when the cap is in its disconnected position, the base remains electrically connected to the at least one photovoltaic module, andwherein the at least one electronic component includes at least one of an optimizer, a rapid shutdown device, or an inverter.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Section 111(a) application relating to and claiming the benefit of commonly-owned, U.S. Provisional Patent Application Ser. No. 63/167,475, filed Mar. 29, 2021, entitled “ELECTRICAL COMPONENTS FOR PHOTOVOLTAIC SYSTEMS,” the contents of which are incorporated herein by reference in its entirety.

US Referenced Citations (289)
Number Name Date Kind
1981467 Radtke Nov 1934 A
3156497 Lessard Nov 1964 A
4258948 Hoffmann Mar 1981 A
4349220 Carroll et al. Sep 1982 A
4499702 Turner Feb 1985 A
4636577 Peterpaul Jan 1987 A
5167579 Rotter Dec 1992 A
5437735 Younan et al. Aug 1995 A
5590495 Bressler et al. Jan 1997 A
5642596 Waddington Jul 1997 A
5951785 Uchihashi Sep 1999 A
6008450 Ohtsuka et al. Dec 1999 A
6033270 Stuart Mar 2000 A
6046399 Kapner Apr 2000 A
6201180 Meyer et al. Mar 2001 B1
6220329 King et al. Apr 2001 B1
6320114 Kuechler Nov 2001 B1
6320115 Kataoka et al. Nov 2001 B1
6336304 Mimura et al. Jan 2002 B1
6341454 Koleoglou Jan 2002 B1
6407329 Iino et al. Jun 2002 B1
6576830 Nagao et al. Jun 2003 B2
6928781 Desbois et al. Aug 2005 B2
6972367 Federspiel et al. Dec 2005 B2
7138578 Komamine Nov 2006 B2
7155870 Almy Jan 2007 B2
7178295 Dinwoodie Feb 2007 B2
7291036 Daily Nov 2007 B1
7487771 Eiffert et al. Feb 2009 B1
7587864 McCaskill et al. Sep 2009 B2
7678990 McCaskill et al. Mar 2010 B2
7678991 McCaskill et al. Mar 2010 B2
7748191 Podirsky Jul 2010 B2
7819114 Augenbraun et al. Oct 2010 B2
7824191 Browder Nov 2010 B1
7832176 McCaskill et al. Nov 2010 B2
8118109 Hacker Feb 2012 B1
8168880 Jacobs et al. May 2012 B2
8173889 Kalkanoglu et al. May 2012 B2
8210570 Railkar et al. Jul 2012 B1
8276329 Lenox Oct 2012 B2
8312693 Cappelli Nov 2012 B2
8319093 Kalkanoglu et al. Nov 2012 B2
8333040 Shiao et al. Dec 2012 B2
8371076 Jones et al. Feb 2013 B2
8375653 Shiao et al. Feb 2013 B2
8404967 Kalkanoglu et al. Mar 2013 B2
8410349 Kalkanoglu et al. Apr 2013 B2
8418415 Shiao et al. Apr 2013 B2
8438796 Shiao et al. May 2013 B2
8468754 Railkar et al. Jun 2013 B2
8468757 Krause et al. Jun 2013 B2
8505249 Geary Aug 2013 B2
8512866 Taylor Aug 2013 B2
8513517 Kalkanoglu et al. Aug 2013 B2
8586856 Kalkanoglu et al. Nov 2013 B2
8601754 Jenkins et al. Dec 2013 B2
8629578 Kurs et al. Jan 2014 B2
8646228 Jenkins Feb 2014 B2
8656657 Livsey et al. Feb 2014 B2
8671630 Lena et al. Mar 2014 B2
8677702 Jenkins Mar 2014 B2
8695289 Koch et al. Apr 2014 B2
8713858 Xie May 2014 B1
8713860 Railkar et al. May 2014 B2
8733038 Kalkanoglu et al. May 2014 B2
8776455 Azoulay Jul 2014 B2
8789321 Ishida Jul 2014 B2
8793940 Kalkanoglu et al. Aug 2014 B2
8793941 Bosler et al. Aug 2014 B2
8826607 Shiao et al. Sep 2014 B2
8835751 Kalkanoglu et al. Sep 2014 B2
8863451 Jenkins et al. Oct 2014 B2
8898970 Jenkins et al. Dec 2014 B2
8925262 Railkar et al. Jan 2015 B2
8943766 Gombarick et al. Feb 2015 B2
8946544 Jacobs et al. Feb 2015 B2
8950128 Kalkanoglu et al. Feb 2015 B2
8959848 Jenkins et al. Feb 2015 B2
8966838 Jenkins Mar 2015 B2
8966850 Jenkins et al. Mar 2015 B2
8994224 Mehta et al. Mar 2015 B2
9032672 Livsey et al. May 2015 B2
9153950 Yamanaka et al. Oct 2015 B2
9166087 Chihlas et al. Oct 2015 B2
9169646 Rodrigues et al. Oct 2015 B2
9170034 Bosler et al. Oct 2015 B2
9171991 Pearce Oct 2015 B2
9178465 Shiao et al. Nov 2015 B2
9202955 Livsey et al. Dec 2015 B2
9212832 Jenkins Dec 2015 B2
9217584 Kalkanoglu et al. Dec 2015 B2
9270221 Zhao Feb 2016 B2
9273885 Rodrigues et al. Mar 2016 B2
9276141 Kalkanoglu et al. Mar 2016 B2
9331224 Koch et al. May 2016 B2
9356174 Duarte et al. May 2016 B2
9359014 Yang et al. Jun 2016 B1
9412890 Meyers Aug 2016 B1
9528270 Jenkins et al. Dec 2016 B2
9605432 Robbins Mar 2017 B1
9711672 Wang Jul 2017 B2
9755573 Livsey et al. Sep 2017 B2
9786802 Shiao et al. Oct 2017 B2
9831818 West Nov 2017 B2
9912284 Svec Mar 2018 B2
9923515 Rodrigues et al. Mar 2018 B2
9938729 Coon Apr 2018 B2
9991412 Gonzalez et al. Jun 2018 B2
9998067 Kalkanoglu et al. Jun 2018 B2
10027273 West et al. Jul 2018 B2
10115850 Rodrigues et al. Oct 2018 B2
10128660 Apte et al. Nov 2018 B1
10156075 McDonough Dec 2018 B1
10187005 Rodrigues et al. Jan 2019 B2
10256765 Rodrigues et al. Apr 2019 B2
10284136 Mayfield et al. May 2019 B1
10454408 Livsey et al. Oct 2019 B2
10530292 Cropper et al. Jan 2020 B1
10560048 Fisher et al. Feb 2020 B2
10563406 Kalkanoglu et al. Feb 2020 B2
D879031 Lance et al. Mar 2020 S
10784813 Kalkanoglu et al. Sep 2020 B2
D904289 Lance et al. Dec 2020 S
11012026 Kalkanoglu et al. May 2021 B2
11177639 Nguyen et al. Nov 2021 B1
11217715 Sharenko Jan 2022 B2
11251744 Bunea et al. Feb 2022 B1
11258399 Kalkanoglu et al. Feb 2022 B2
11283394 Perkins et al. Mar 2022 B2
11309828 Sirski et al. Apr 2022 B2
11394344 Perkins et al. Jul 2022 B2
11424379 Sharenko et al. Aug 2022 B2
11431280 Liu et al. Aug 2022 B2
11431281 Perkins et al. Aug 2022 B2
11444569 Clemente et al. Sep 2022 B2
11454027 Kuiper et al. Sep 2022 B2
11459757 Nguyen et al. Oct 2022 B2
11486144 Bunea et al. Nov 2022 B2
11489482 Peterson et al. Nov 2022 B2
11496088 Sirski et al. Nov 2022 B2
11508861 Perkins et al. Nov 2022 B1
11512480 Achor et al. Nov 2022 B1
11527665 Boitnott Dec 2022 B2
11545927 Abra et al. Jan 2023 B2
11545928 Perkins et al. Jan 2023 B2
11658470 Nguyen et al. May 2023 B2
11661745 Bunea et al. May 2023 B2
11689149 Clemente et al. Jun 2023 B2
11705531 Sharenko et al. Jul 2023 B2
11728759 Nguyen et al. Aug 2023 B2
11732490 Achor et al. Aug 2023 B2
11811361 Farhangi et al. Nov 2023 B1
11824486 Nguyen et al. Nov 2023 B2
11824487 Nguyen et al. Nov 2023 B2
11843067 Nguyen et al. Dec 2023 B2
20020053360 Kinoshita et al. May 2002 A1
20020129849 Heckeroth Sep 2002 A1
20030101662 Ullman Jun 2003 A1
20030132265 Villela et al. Jul 2003 A1
20030217768 Guha Nov 2003 A1
20040000334 Ressler Jan 2004 A1
20050030187 Peress et al. Feb 2005 A1
20050115603 Yoshida et al. Jun 2005 A1
20050144870 Dinwoodie Jul 2005 A1
20050178428 Laaly et al. Aug 2005 A1
20060042683 Gangemi Mar 2006 A1
20070074757 Mellott et al. Apr 2007 A1
20070181174 Ressler Aug 2007 A1
20070193618 Bressler et al. Aug 2007 A1
20070249194 Liao Oct 2007 A1
20070295385 Sheats et al. Dec 2007 A1
20080006323 Kalkanoglu et al. Jan 2008 A1
20080035140 Placer et al. Feb 2008 A1
20080315061 Placer et al. Feb 2008 A1
20080078440 Lim et al. Apr 2008 A1
20080110490 Duesterhoeft May 2008 A1
20080185748 Kalkanoglu Aug 2008 A1
20080271774 Kalkanoglu et al. Nov 2008 A1
20080302030 Stancel et al. Dec 2008 A1
20090000222 Kalkanoglu et al. Jan 2009 A1
20090014058 Croft Jan 2009 A1
20090019795 Szacsvay et al. Jan 2009 A1
20090044850 Kimberly Feb 2009 A1
20090114261 Stancel et al. May 2009 A1
20090133340 Shiao et al. May 2009 A1
20090159118 Kalkanoglu Jun 2009 A1
20090178350 Kalkanoglu et al. Jul 2009 A1
20090229652 Mapel et al. Sep 2009 A1
20090275247 Richter et al. Nov 2009 A1
20100018135 Croft Jan 2010 A1
20100019580 Croft et al. Jan 2010 A1
20100095618 Edison et al. Apr 2010 A1
20100101634 Frank et al. Apr 2010 A1
20100116325 Nikoonahad May 2010 A1
20100131108 Meyer May 2010 A1
20100139184 Williams et al. Jun 2010 A1
20100146878 Koch et al. Jun 2010 A1
20100159221 Kourtakis et al. Jun 2010 A1
20100170169 Railkar et al. Jul 2010 A1
20100186798 Tormen et al. Jul 2010 A1
20100242381 Jenkins Sep 2010 A1
20100263704 Fornage Oct 2010 A1
20100313499 Gangemi Dec 2010 A1
20100326488 Aue et al. Dec 2010 A1
20100326501 Zhao et al. Dec 2010 A1
20110030761 Kalkanoglu et al. Feb 2011 A1
20110036386 Browder Feb 2011 A1
20110036389 Hardikar et al. Feb 2011 A1
20110048507 Livsey et al. Mar 2011 A1
20110058337 Han Mar 2011 A1
20110061326 Jenkins Mar 2011 A1
20110100436 Cleereman et al. May 2011 A1
20110104488 Muessig et al. May 2011 A1
20110132427 Kalkanoglu et al. Jun 2011 A1
20110168238 Metin et al. Jul 2011 A1
20110239555 Cook et al. Oct 2011 A1
20110302859 Crasnianski Dec 2011 A1
20120034799 Hunt Feb 2012 A1
20120060902 Drake Mar 2012 A1
20120085392 Albert et al. Apr 2012 A1
20120137600 Jenkins Jun 2012 A1
20120176077 Oh et al. Jul 2012 A1
20120212065 Cheng et al. Aug 2012 A1
20120233940 Perkins Sep 2012 A1
20120240490 Gangemi Sep 2012 A1
20120260977 Stancel Oct 2012 A1
20120266942 Komatsu et al. Oct 2012 A1
20120279150 Pislkak et al. Nov 2012 A1
20120282437 Clark et al. Nov 2012 A1
20120291848 Sherman et al. Nov 2012 A1
20130008499 Verger et al. Jan 2013 A1
20130014455 Grieco Jan 2013 A1
20130118558 Sherman May 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130247988 Reese et al. Sep 2013 A1
20130284267 Plug et al. Oct 2013 A1
20130306137 Ko Nov 2013 A1
20140090697 Rodrigues et al. Apr 2014 A1
20140150843 Pearce et al. Jun 2014 A1
20140173997 Jenkins Jun 2014 A1
20140179220 Railkar et al. Jun 2014 A1
20140182222 Kalkanoglu et al. Jul 2014 A1
20140254776 O'Connor et al. Sep 2014 A1
20140266289 Della Sera Sep 2014 A1
20140311556 Feng et al. Oct 2014 A1
20140352760 Haynes et al. Dec 2014 A1
20140366464 Rodrigues et al. Dec 2014 A1
20150089895 Leitch Apr 2015 A1
20150162459 Lu et al. Jun 2015 A1
20150188486 Marroquin Jul 2015 A1
20150340516 Kim et al. Nov 2015 A1
20150349173 Morad et al. Dec 2015 A1
20160105144 Haynes et al. Apr 2016 A1
20160142008 Lopez et al. May 2016 A1
20160254776 Rodrigues et al. Sep 2016 A1
20160276508 Huang et al. Sep 2016 A1
20160359451 Mao et al. Dec 2016 A1
20170159292 Chihlas Jun 2017 A1
20170179319 Yamashita et al. Jun 2017 A1
20170179726 Garrity et al. Jun 2017 A1
20170179876 Freeman Jun 2017 A1
20170237390 Hudson et al. Aug 2017 A1
20170331415 Koppi et al. Nov 2017 A1
20170353150 Alon Dec 2017 A1
20180094438 Wu et al. Apr 2018 A1
20180097472 Anderson et al. Apr 2018 A1
20180115275 Flanigan et al. Apr 2018 A1
20180219509 Martinson Aug 2018 A1
20180254738 Yang et al. Sep 2018 A1
20180331652 Okawa Nov 2018 A1
20180351502 Almy et al. Dec 2018 A1
20180367089 Stutterheim et al. Dec 2018 A1
20190030867 Sun et al. Jan 2019 A1
20190081436 Onodi et al. Mar 2019 A1
20190123679 Rodrigues Apr 2019 A1
20190253022 Hardar et al. Aug 2019 A1
20190305717 Allen et al. Oct 2019 A1
20200020819 Farhangi Jan 2020 A1
20200109320 Jiang Apr 2020 A1
20200144958 Rodrigues et al. May 2020 A1
20200220819 Vu et al. Jul 2020 A1
20200224419 Boss et al. Jul 2020 A1
20200343397 Hem-Jensen Oct 2020 A1
20210115223 Bonekamp et al. Apr 2021 A1
20210159353 Li et al. May 2021 A1
20210343886 Sharenko et al. Nov 2021 A1
20220149213 Mensink et al. May 2022 A1
20220224240 Takagi Jul 2022 A1
Foreign Referenced Citations (24)
Number Date Country
2829440 Apr 2014 CA
700095 Jun 2010 CH
202797032 Mar 2013 CN
1958248 Nov 1971 DE
1039361 Sep 2000 EP
1837162 Sep 2007 EP
1774372 Jul 2011 EP
2446481 May 2012 EP
2784241 Oct 2014 EP
10046767 Feb 1998 JP
2001-098703 Apr 2001 JP
2002-106151 Apr 2002 JP
2017-027735 Feb 2017 JP
2018053707 Apr 2018 JP
20090084060 Aug 2009 KR
10-2019-0000367 Jan 2019 KR
10-2253483 May 2021 KR
2026856 Jun 2022 NL
2011049944 Apr 2011 WO
2015133632 Sep 2015 WO
2018000589 Jan 2018 WO
2019201416 Oct 2019 WO
2020-159358 Aug 2020 WO
2021-247098 Dec 2021 WO
Non-Patent Literature Citations (4)
Entry
Sunflare, Procducts: “Sunflare Develops Prototype for New Residential Solar Shingles”; 2019 «sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles» retrieved Feb. 2, 2021.
RGS Energy, 3.5KW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 «facebook.com/RGSEnergy/» retrieved Feb. 2, 2021.
Tesla, Solar Roof «tesla.com/solarroof» retrieved Feb. 2, 2021.
“Types of Roofing Underlayment”, Owens Corning Roofing; «https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home» retrieved Nov. 1, 2021.
Related Publications (1)
Number Date Country
20220311377 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
63167475 Mar 2021 US