The present application is the U.S. national stage application pursuant to 35 U.S.C. §371 of International Application No. PCT/EP2010/054654, filed Apr. 8, 2010, which application claims benefit of European Application No. EP09169068.5, filed Aug. 31, 2009.
The present invention relates to a method of producing an electrically conductive connection between metallic components which have a non-conductive coating. In particular, the invention relates to a method of producing an electrically conductive coating between metallic components which are coated with an enamel, glass or similar coating that is resistant to corrosive media.
In the chemical and pharmaceutical industries, it is common for agitators to be used in corrosive environments. In such cases, the agitator blades and the agitator shaft to which the blades are connected are usually coated with materials such as enamel or glass, which are stable in such environments and can withstand attack by such media. It is normal for both the agitator shaft and the agitator blades to be completely coated by the stable medium so that they only contact one another by way of the medium, which typically is not electrically conductive.
EP0189992 describes an agitator assembly wherein the exterior surfaces of agitator blades as well as the exterior surface of a drive shaft for the agitator blades are coated with glass and a hub of the agitator blade assembly is interference fitted to the drive shaft in glass-to-glass surface contact sufficient to withstand torque imparted to the blades by the drive shaft. The shrink-fitting of agitator blades to a drive shaft in this way has been shown to be impermeable to liquids and is therefore liquid-tight, it having been verified that liquid particles penetrate the joint only to a small extent in a region at the periphery of blade hub/drive shaft connection area.
However, it will be appreciated that in such an assembly there is no electrical connection between the agitator blades and the drive shaft. The lack of any electrical connection between the agitator blades and the drive shaft means that the agitator cannot be electrically earthed. Regulations now require that within certain vessels used in chemical and pharmaceutical processes all components must be grounded to prevent electrostatic charges building up.
Also, the lack of any electrical connection between the agitator blades and the drive shaft means that known methods of monitoring the state of the enamel coating the blades cannot be used. In such a method, electrical means for detecting damage would be connected between an electrode extending into, for example, a conductive liquid contained in the vessel and an external conductor connected to the drive shaft. When enamel damage occurs, the conductive liquid would come into direct contact with the metal of the agitator blades, thus closing the electrical circuit to actuate an alarm. If an electrical connection is required currently it is necessary to provide metallic rings around the blade hub which can contact a metallic area of the agitator shaft, both of which metallic areas must be made from chemically stable material. These rings are typically made from corrosion-resistant steel and are welded in the interior of a blade hub and the shaft of an agitator assembly. It is critical, however, that the rings are sealed with respect to the adjoining enamel coating to prevent corrosive attack on the underlying metal. This is a potential source of damage to the enamel coating. As a result of these requirements and the fact that only chemically stable metals can be used, this method is very costly. Also, it is not possible to upgrade an existing agitator assembly to apply it. In an alternative approach, chemically stable screws, wires and cables can be used to conjoin components together but this in itself can be a cause of considerable damage to the enamel or other non-conductive coating. Also, both of these methods can lead to a high contact resistance existing between the two components which is not always desirable.
EP 1346764 details a mechanism of utilizing an electrically conductive paste between the two insulated items, to overcome the above problems. In particular, the pasty material is aligned with small breaks in the insulating film on the electrical conductive and insulated items, so as to provide the electrical connection there-between. This technique works especially well with interference fit connections, as these connections are generally watertight, and thus protect the pasty material from the surrounding environment.
It is desirable, however, to improve on this prior technique by allowing the use of the conductive pasty medium without the requirement of locating this within a water or airtight seal. For example, it is not always practicable to provide a fully isolating interference fit seal, which is a requirement for the above design. The present application overcomes this drawback, by allowing the use of a conductive pasty material without the use of a specifically isolating connection between the conductive and isolated items.
A first aspect of the present disclosure relates to a method of electrically connecting two or more conductive elements. In particular, these conductive elements are provided with a non-conductive coating over most, if not all, of their outer surface. Clearly, if the outer surface is provided with a non-conductive coating, simple connection together of the conductive elements will not lead to an appropriate electrical path there-between. The method of creating the connection may further comprise introducing a conductive, or partly conductive paste lying in a region between the conductive elements, and in particular lying at places on the conductive element where the non-conductive coating has been removed or was never present. In this manner, it is clear that an electrical connection can be formed via the conductive paste through the gaps in the non-conductive coating so as to electrically connect together the conductive elements.
It is further possible to provide a sealing element, which is preferably airtight and/or watertight, in a region near the conductive paste in order to isolate this from the surrounding environment of the conductive elements. In particular, this sealing element can be placed such that when the two conductive elements are connected together in some manner, the sealing element forms a bridge between these two conductive elements and leads to an appropriate seal isolating the conductive paste from the environment surrounding the conductive elements. It is further advantageous if the seal is to degree compressed between the two conductive elements, thus ensuring that no leakage gaps can form across the seal.
As well as describing the method for producing this contact, the present disclosure also relates to the actual contact itself between a plurality of electrically conductive elements. Obviously, the methods described will also lead to a product which is considered as part of the present disclosure.
The sealing element may either be fabricated as an integral part of one, or more, of the electrically conductive elements. For example, when the conductive element is manufactured, the region in which the conductive paste will be placed is known, and thus the sealing element can be integrated with the conductive element around this point. It is also possible that during the connection together of the electrically conductive elements, an appropriate sealing element is introduced at the point of connection, so as to appropriately isolate the pasty material. In this case, it is clear that the present disclosure may also relate to only a single conductive element in which the appropriate sealing element has been combined. Whilst the present disclosure generally relates to the formation of an electrical connection between more conductive elements, it is clear that the present disclosure could also relate to just a single conductive element which is also adapted to incorporate the sealing element in a region so as to isolate a conductive paste which could be used in an electrical connection.
The sealing element itself can take on a variety of forms, and further can be comprised of a variety of materials. Any appropriate material which will withstand the environment surrounding the electrical connection is appropriate, in particular if this material is chemically inert and will not react with the surrounding environment. Example materials include a range of rubbers or synthetic plastics, such as PTFE, which have the further advantage of being slightly compressible such that a compression between the two electrical elements will lead to a slight compression of the seal and thus an improved isolation of the conductive paste. This is particularly useful if the way of connecting the conductive elements is by a shrink-fit connection.
If one of the elements is intended to frictionally engage with the second or more elements, this can be achieved by cooling one of the elements to reduce its size slightly to allow it to be positioned within an appropriate holding portion of the other elements. Once the cooled element starts to heat up it will naturally expand to its original size, and thus can be frictionally held within the other electrically conductive elements. Clearly, if the mechanism of fixing together the conductive elements is by this shrink-fitting technique, the sealing element will be brought under a compression force between the one or more elements, thus compressing the sealing element and leading to a good isolation seal.
It is possible for the pasty medium to be held in a pocket formed on one or more of the electrically conductive elements. In particular, the pasty medium can be placed in a pocket which is formed in the region of the hole in the insulating outer material, so as to make a good electrical connection with the conductive element beneath. A variety of mechanisms for isolating this pasty material by means of the seal exist, one of which relates to completely surrounding the pasty material by means of the seal on the surface of the conductive element. If the seal is placed completely surrounding the pasty material on the surface of the conductive element, it is clear that when the conductive elements are brought into connection, the seal will be formed and completely isolate the pasty material from the surrounding environment.
An additional technique for isolating the conductive paste would be to provide a plurality of seals surrounding areas or elements or parts of at least one of the conductive elements. The regions chosen for such sealing elements will be such that after connection of the conductive elements together, the seals would again form a region completely surrounding the volume in which the conductive paste is present. For example, if the element comprising the seals is of a cylindrical form, two circular seals could be placed either side of the area holding the pasty material, such that after engagement with the remaining conductive elements, the two seals form a tubular region comprising the pasty material which is fully isolated from the surrounding. It will be clear to the skilled person that any number of such seals can be provided depending upon the geometry of the connection between the conductive elements.
In addition, or instead of, providing the sealing element, it is also possible to provide a channel leading to the volume holding the conductive paste. Such a channel would extend through one or more of the conductive elements from the outside of the element through to the volume holding the conductive paste. Such a channel could be used for a variety of techniques, for example: allowing additional conductive paste to be positioned within the connection point. Additionally, if the connection point were originally provided without the conductive paste, the channel would allow the opportunity of injecting or positioning conductive paste within the conductive region, so as to form the electrical conduction. Further, if the conductive paste were originally dosed in the region leading to the connection, and after assembly of the conductive elements was found to be too little, the channel could be used to introduce more conductive paste.
As will also be clear, it is possible to use a channel, if provided, to actually remove the conductive paste from the conductive region. If the conductive elements have been shrink-fit together and the elements are to be disengaged from each other, removal of the conductive paste can improve the disassembly process. This could readily be achieved by use of an appropriate solvent and some sort of syringe, in order to dose the solvent through the channel into the region comprising the conductive paste.
Further, the channel could be used to ensure that the regions on the conductive elements without the insulation coating were appropriately aligned. The channel would allow a viewing port through to this region which could be used in order to ensure that the two conductive regions are appropriately aligned prior to incorporation of the conductive paste. Further, if the channel is used in conjunction with the sealing element, the channel could be used to check that the seal is indeed air and/or watertight. By introducing air or water of a high pressure into the channel, it will be obvious whether the seal is indeed appropriately sealing the area around the electrical connection between the conductive elements.
It is further possible to provide this channel open ended, or also to provide some mechanism of sealing the channel from the outside. Any number of sealing mechanisms will be apparent, not least of all a screw or compression-fit bung element, or the like. Indeed, any appropriate mechanism for fully sealing the end of the channel can be conceived.
Additional discussion is presented relating to the possibility of providing elongate electrical connections passing through the non-conductive coatings on the electrically conductive elements. These elongate structures can be used to improve the overlap of the connections during attachment of the conductive elements together. Markings may also be provided which show the location of the grooves, in order to improve the ease of connection.
The nature and mode of operation of the present invention will now be more fully described in the following detailed description of the invention taken with the accompanying drawing figures, in which:
In the following, the concepts of the disclosure are described with relation to an agitator assembly 1. This is, of course, by way of example only. Indeed, the following methods and products can, as will be appreciated by the skilled person, readily be applied to any connection between two or more electrically conductive items which have an insulation coating thereon.
With reference to
In part accordance with the present invention, in order to ensure that the agitator blade assembly 6 and the drive shaft 2 are placed in electrical contact, an electrically conductive pasty medium 8 may be located in a region between the assembly 6 and the drive shaft 2 in contact with portions 9 and 10 respectively of the assembly 6 and the drive shaft 2, which are substantially free of the enamel or glass coating 7.
The pasty medium 8 may be located away from the edges of the shrink-fit connection and well within the area of contact between the assembly 6 and the drive shaft 2, surrounded by interference fitted contact areas 11 between these components. To a first order, these interference fitted contact areas 11 prevent the pasty medium 8 being washed out of, or otherwise accidentally removed from, the agitator assembly when it is in use. The shrink-fit connection itself thereby provides a primary protection for the pasty medium 8.
As it is necessary to for the pasty medium 8 to be in electrical contact with the underlying metal of the assembly 6 and the drive shaft 2, the two components 2, 6 are either ground prior to their shrink-fitment to remove the enamel or glass coating 7 in areas which will lie apposed to one another when they have been shrink-fitted together, or they are treated to ensure that the appropriate portions 9 and 10 comprise blank metal that has been left free of the non-conductive coating 7. In the latter case, it may be necessary to remove scale to produce bare metal portions 9 and 10 that will ensure a good electrical connection. In addition, preferably at least one of the two components 2, 6, and advantageously both of them, is ground or otherwise treated to provide a pocket 12 in which the bare metallic portion 9 or 10 that is substantially free of the non-conductive coating 7 is formed and in which a volume of the pasty medium 8 can be retained.
Preferably, the surface area of the pocket 12 is large in comparison to the surface area of the metallic portion 9 or 10 located therein. Also, the surface area of the pocket opening in one component as presented to the other component should also be large in comparison to the surface area of the metallic portion 9 or 10 of that other component. In this way, the bare metallic portions 9 and 10 can be located well away from the periphery of the shrink-fitted joint and therefore protected from any external media which may penetrate the joint during use of the assembly.
The pocket, or pockets, 12 are possibly circular with a diameter of approximately 5-6 mm. The pocket 12 in the blade assembly 6 is located centrally of the hub 5 and that in the drive shaft 2 is located in a region 2 which will lie adjacent thereto when the assembly 6 has been shrink-fitted onto the drive shaft 2, as shown in
Once the pockets 12 have been ground out, they can be both completely filled with the pasty medium and the surfaces of the medium smoothed to stand lightly proud of the adjacent surfaces of the hub 5 and the drive shaft 2. The two components can then be shrink-fitted in a conventional manner. Other methods or filling the pockets 12 are presented below.
Also, it is often the case in use of an agitator assembly such as is shown in
The pasty medium 8 itself is at least partially electrically conductive and preferably comprises a chemically universal non-corroding material, in order that any material which penetrates into the connection joint does not cause any corrosion to occur that may destroy the joint. Also, it is important, that the medium 8 itself does not damage the regions of the drive shaft 2 and the blade assembly 6 with which it is in contact In appropriate cases it can be made from one or more food grade materials.
Preferably, the pasty medium comprises a mixture of including graphite, the ratio of graphite to the other materials of the medium being varied to achieve the desired conductivity. Other materials, such as fillers, may be added to the medium, as desired or required. For example it may comprise proprietary materials for identification purposes.
It will be appreciated that in order to ensure that cavities are not formed in the medium 8 during use of the agitator assembly, the medium 8 preferably has a coefficient of thermal expansion which is comparable with that of the components between which it is to be located. In most cases these components will be steel. Also, the medium 8 preferably has a viscosity which remains substantially constant over a temperature range between −90° C. and 300° C. inclusive. To facilitate use of the medium 8, preferably it is also made with sufficient form stability to be plastically deformable and impermeable.
It will be appreciated that the method described above provides an electrical connection between the components which has sufficient conductivity and which is simple and cost effective. There is no requirement for any external conductive connection between the components and the connection used is chemically stable.
As can be seen in
It is by example only that the watertight seal 20 is provided on the enlarged end section 3 of the drive shaft 2. It is equally possible to provide the watertight seal 20 around the packet 12 provided in the hub 5, which would lead to a similar modification to the hub 5 shown in
As will be clear, when the drive shaft 2 and agitator 6 are appropriately aligned such that both pockets 12 on each item are aligned to give the electrical connection, the watertight seal element 20 will surround the entire connection point. In other words, the watertight seal 20 will be present in the gap or region between the two abutting pieces, and will fully surround both pockets and the pasty material 8. Choice of an appropriate sealing material, will thus lead to a full watertight seal totally surrounding electric connection between the drive shaft 2 and agitator 6. One possible option for the sealing element 20 is to provide this by a thin PTFE film which appropriately surrounds the point of connection. The use of PTFE is ideal, as this tends to be a chemically inactive material which will be resilient to most if not all of the chemicals likely to be in contact with the agitator assembly 1. Naturally, any other material which provides the appropriate chemically inert nature for an appropriate material being stirred could be used in place of PTFE. Advantageously, this seal 20 would then be a film-like element, as this essentially ensures that at least in the region around the electric connection point the agitator 6 and drive shaft 2 are fully sealed together, thus protecting the pasty medium 8.
As is typical, and as has been described above, the agitator blade assembly 6 is often shrink-fitted to the drive shaft 2. The use of the above sealing element 20 is ideal, as this can be placed at the appropriate point around the pocket 12 prior to the shrink-fitting of the two pieces together. A typical shrink-fitting process would be to treat the shaft 2 in a cold fluid, for example liquid nitrogen, such that this would shrink by the appropriate amount. This can then be position within the agitator blade assembly 6, and allowed to expand again by exposure to normal temperature. If the sealing element 20 is provided at the appropriate region around the pockets 12, the expansion of the drive shaft 2 within the interior of the hub 5 of the agitator blade assembly 6 will lead to compression of the film making up the sealing element 20, and will consequently lead to a good seal by means of the compression between the drive shaft 2 and hub 5.
It is possible to structure the sealing element 20 as either an integral part of the drive shaft 2 or agitator assembly 6, for example integrated upon manufacture of these two parts; or to provide this after production of the two parts. For example, the sealing element 20 could be provided by an appropriate O-ring or whatever shape proved to be relevant for appropriately covering and surrounding the two pockets 12, which can be attached to the relevant part after it has been manufactured. That is, the sealing element could be provided with a sticky side which could be used to affix the sealing element around the relevant pocket 12. Additionally, it could be possible to ensure that the sealing element was positioned without the use of glue or otherwise around the pocket 12, such that after expansion of the drive shaft 2 the sealing element 20 is held in its appropriate position around the pocket 12.
Whilst
A further possible feature which could be incorporated into the agitator assembly 1 is shown in
As is shown in
The channel 21 can be used for a variety of techniques in conjunction with the pockets 12. Firstly, it will be possible to provide a friction fit agitator assembly 1 without dosing the pockets 12 with the pasty medium 8. By means of the channel 21, the pasty medium 8 could be injected through the channel 21 so as to fully fill the two pockets 12. Additionally, the channel 21 could be used in a system where the two pockets 12 had been previously filled, but not completely, so that the entire space formed by these two pockets 12 can be appropriately filled.
Should the channel 21 be provided in addition to the sealing element 20, the channel 21 could be used to ensure that the seal formed by sealing element 20 is in fact complete and water/airtight. By accessing the open end of channel 21, the channel 21 could be pressurized, and it could be monitored whether the region of the two pockets 12 and the seal 20 were appropriately sealed. Obviously, if a full air and watertight seal is provided by the sealing element 20, the channel 21 will remain pressurized and no leak will be detected. Naturally, if a leak is present through channel 21 and the region defined by the two pockets 12 and the seal 20, this will also be detected by means of over pressurizing the channel 21. In this regard, the channel 21 can be considered as an observation port for checking the status of the two pockets 12 and seal element 20.
Further, the channel 21 could be used as a way to remove the pasty medium 8 from the region of the seal between the hub 5 and drive shaft 2. In order to improve the disassembly of the hub 5 and drive shaft 2, for routine maintenance or the like, it is advantageous to remove the pasty medium 8 before this is undertaken. Typically, the pasty medium 8 can freeze before the temperature used for removing the shrink-fit between the hub 5 and drive shaft 2, thus hindering the disassembly process. By use of an appropriate solvent and syringe through the channel 21, the pasty medium 8 can be flushed out of the region defined by the two pockets 12, thus facilitating eventual disassembly. Also, it is possible to use this method to replace the pasty medium 8, by removing the medium through the channel and then replacing with fresh pasty medium 8.
Further aspects and options for forming an electrical connection between two or more electrically conductive elements 2, 6, are shown in
Looking at
In order to improve the alignment between the electrically conductive elements 2, 6, it is possible to provide a conductive portion which has an extended structure. By providing the conductive portion between the two electrically conductive elements 2, 6 by an extended conductive structure, the requirements of exact alignment between the portions of the non-conductive coating 7 with a break through to the electrically conductive elements 2, 6, can be relaxed. This is most clearly seen in
One preferred design for the extended conductive regions, is to provide extended grooves 30 passing through the non-conductive coating 7 to the conductive elements 2, 6 underneath. This extended groove 30 can be seen in
In order to improve the overlap between the extended grooves 30, it is desirable to position the grooves 30 such that when the electrically conductive elements 2, 6 are joined together, the extended grooves 30 do not lie parallel with each other. By forming the grooves 30 such that they will not lie parallel, this improves the range of relative orientations between the electrically conductive elements 2, 6 which can be used to then form the electrical conduction between the two elements 2, 6. The example shown in the
It is further advisable or desirable for the extended grooves 30 to be formed such that after joining together of the electrically conductive elements 2,6, the central points 33 of each of the extended channels 30 would be in a position that they could overlap. As can be seen in
As can be seen in
The conductive material or medium 8 can be provided by a variety of materials, including those discussed above. It is also possible in the present system, as well as the system shown in
Choice of the metal within the pasty medium 8 is not limited, although the use of rhodium or platinum in a 50:50 enamel mix is preferred. Rhodium and platinum are particularly desirable as they have good electrical conductivity, and also have very low chemical reactivity. The use of these materials will thus mean that if the eventual structure is to be provided in a harsh environment, the conductive glass or enamel-like region 31 will not be damaged or affected by any harsh chemicals or the like. It is further advisable and desirable to pick a metal and enamel mixture which will have similar thermal expansion properties as the non-conductive coating 7, such that the non-conductive coating 7 and the conductive glass or enamel-like region 31 will expand and contract to the same degree, thus meaning that a crack or gap in the coating will not arise in use.
It is particularly interesting and useful to provide the groove 30 in the non-conductive coating 7 and fill this with the above mentioned pasty conductive material 8 in order to create an appropriate connection there-between. After sintering the electrically conductive element 2, 6, the pasty conductive medium 8 is transferred into the glass or enamel-like region 31 which has a high electrical conductivity so that the electrical connection can be made between the electrically conductive elements 2, 6. Upon fitting together of the electrically conductive elements 2, 6, perhaps by means of a shrink fit or friction fit engagement, the alignment between the conductive glass or enamel-like region 31 in each of the extended grooves 30 can be achieved quite readily, as there is a good tolerance between the locations of the extended grooves 30 on each of the electrically conductive elements 2, 6.
It is also possible to provide a series of markings 30 on each of the electrically conductive elements 2, 6 which are to be connected together. By providing a marking or markings 32 on sections of the electrically conductive element 2, 6 which will not be hidden when the electrically conductive elements 2, 6 are joined together, it is possible to improve the connection overlap between the extended grooves 30. As can be seen in
In the example given in
The above discussion of the agitator assembly 1 has been presented in relation to the attached figures. In this discussion, however, no intended explicit combination of features should be derivable therefrom. Indeed, it is intended that the above discussion be understood to be a collection of possible features and ideas which can be combined as required by the skilled practitioner. That is, no combination of features should be considered as explicitly defined in combination, and all aspects should be considered as combinable in any possible permutation or combination of features.
Number | Date | Country | Kind |
---|---|---|---|
09169068 | Aug 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/054654 | 4/8/2010 | WO | 00 | 6/11/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/023422 | 3/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4152540 | Duncan et al. | May 1979 | A |
4964788 | Itameri-Kinter et al. | Oct 1990 | A |
4984927 | Kojima et al. | Jan 1991 | A |
4984973 | Itameri-Kinter et al. | Jan 1991 | A |
5006286 | Dery | Apr 1991 | A |
5318756 | Sheller et al. | Jun 1994 | A |
20020046865 | Bertini | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
0189992 | Aug 1986 | EP |
1206009 | May 2002 | EP |
1346764 | Sep 2003 | EP |
2007046635 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20120241215 A1 | Sep 2012 | US |