The invention relates to an electrical spring clamp for contacting at least two electrical conductors. The spring clamp includes at least one spring and a power conducting element with two side walls so that an electrical conductor to be contacted is insertable into the spring clamp between one respective spring end and a side wall.
Electrical spring clamps in which an electrical conductor is clamped through a spring are known in the art.
For example U.S. Pat. No. 2,988,726 illustrates a spring that is enveloped by a can and supported by an adjustable bolt. The electrical conductors that are to be contacted are inserted between a bent section of the spring and the outer wall of the can and clamped through the spring pressure thus reinforced.
According to the invention a connection clamp is provided for electrically connecting at least two electrical conductors, the connection clamp including at least one power conducting element, a substantially W-shaped spring and a spring receiver. The power conducting element includes at least two side walls which respectively include at least one electrical contact surface on their insides oriented towards one another. The outer arms of the spring are respectively connected through a shoulder with a loop of the spring that is arranged between the arms. Thus the spring receiver includes three supports, wherein one support engages the loop and one respective support engages one respective shoulder of the spring. Furthermore the spring is arranged between the side walls. The arms of the spring are arranged respectively at a slant angle relative to the adjacent side wall. Furthermore the spring ends are configured as pull safety edges. Thus, the electrical conductor is insertable between a spring end and a side wall and is pressed against the contact surface through the spring force.
Additional features are inherent in the disclosed products and methods or will become apparent to those skilled in the art from the subsequent detailed description of embodiments and the accompanying drawing figures.
The connection clamp facilitates a rather simple assembly and safe support of electrical conductors to be contacted. Furthermore a simple and independent disengagement of contacted electrical conductors is provided.
Before a particular embodiment of the connection clamp is described in detail some general considerations regarding the optional embodiments are provided.
Spring clamps contrary to screw clamps typically provide rather simple insertion of the electrical conductors to be contacted and therefore provide a comfortable and quick assembly. In insertable spring clamps, this means spring clamps for inserting conductors without additional tooling, however, the clamping force due to the limited spring force of the springs for assembly without tools is typically limited. For good properties of the electrical contact between electrical conductors to be connected and the clamp, however, sufficient clamping pressure is required. For a higher spring force, however, depending on the properties of the conductor leads using a tool is typically required for opening the spring for inserting the conductor which, however, is typically still less complex than connecting a screw clamp. Loading springs through tools in turn requires space at the clamp. In this conflicting situation with various competing influencing factors (clamping pressure, simple and quick assembly, installation space) the present invention provides an improved solution.
The connection clamp described herein is a spring clamp for electrically contacting at least two electrical conductors. For this purpose it includes at least one power carrying element, an essentially W-shaped spring and a spring receiver.
The power carrying element includes at least two side walls which respectively include electrical contact surfaces at insides oriented towards one another. Thus, the power carrying element is not configured spring elastic and made from an electrically conductive material like e.g. copper and thus provides the electrical connection through the contact surfaces between the conductors to be connected. Also outside of the contact surfaces the power carrying element can be configured without electrical insulation. It is e.g. integrally made from metal in one piece.
The essentially W-shaped spring includes outer arms that are arranged on both sides, wherein the outer arms are respectively connected through a respective shoulder with a loop of the spring arranged between the arms. Thus, the spring is supported by the spring support through at least three supports in that one support engages the loop and one respective support engages a respective shoulder so that the spring extends like a serpentine about the supports. Thus, the outer arms facilitate essentially independently from one another to generate spring forces for clamping two electrical conductors respectively on both sides of the spring.
For clamping the electrical conductors the spring is arranged in a projection between the side walls. The arms of the spring are arranged respectively at a slant angle relative to the adjacent side wall. Thus, the spring ends are configured as pull safety edges. Through the edge clamped conductors are secured against a forced pull out or other unintentional loosening. The pull safety function is based on the principle of self locking in that the square edged spring ends dig into the surface of the clamped conductor at least slightly through the clamping pressure due to the spring force. Through slanting the arms, namely in that the angle between an inserted conductor and the arm is less than 90° a pull out of the conductor without pull relief of the spring without destroying or damaging the conductor is prevented. The self locking function can also be reinforced through a hook shaped configuration of the spring end. For disengaging the conductor the self locking can be removed through providing a pull relief for the spring through a tool.
Overall the connection clamp described herein is configured to clamp and electrically contact an electrical conductor in that it is inserted between a spring end and a side wall and pressed through the spring force against the contact surface.
Through the described connection surface at least two electrical conductors can be contacted through only one spring which can be configured e.g. integrally in one piece. In one configuration of the connection clamp the support of the spring receiver arranged in the loop of the spring extends substantially over an inner diameter of the loop so that the spring is supported with little clearance or at least in one direction from a spring end to an opposite end substantially without clearance.
In some embodiments the supports of the spring receiver are arranged in an apex portion of the shoulder or of the loop so that the spring with W-curvature is supported in the portion of the apexes of the curvature. Bending radii that are too small or a kinking of the spring can be prevented in that a support of the spring receiver includes at least a partial radius which essentially corresponds to the minimum desired curvature radius of the spring in the portion of the spring support.
In one embodiment the spring has a curvature radius of at least a tenth of the length of the arms in the apex portion of the shoulders and in the portion of the loop.
In some embodiments the W-shape of the spring can be implemented so that the supports in the portion of the shoulder are enveloped by approximately 50° to 60° or also by more than 90°. Thus alternatively also the support in the portion of the loop can be enveloped by the spring by approximately 170°-190°.
In some embodiments the spring ends contact the side walls in a condition where no conductor is inserted. Thus, the spring can have a particular preload in order to provide a minimum spring force.
In some embodiments of the connection clamp the spring force is not adjustable anymore after inserting and clamping the electrical conductors. Thus, the connection clamp does not include any adjustment devices e.g. for reinforcing the spring force of the springs after a conductor is inserted. Rather the spring force required for safely clamping the electrical conductors is provided solely through compressing the spring when inserting the conductor. This facilitates a quick assembly since an adjustment or readjustment of the clamping pressure is not required.
In one embodiment the spring of the connection clamp is arranged in the spring receiver so that the spring force is not adjustable. Accordingly the connection clamp does not include an adjustment element or another arrangement through which the spring force of the spring is changed through the production or preassembly of the connection clamp itself and also during the connection of electrical conductors during later use of the clamp. A variation of the spring force, however, can be provided through selecting different types of springs. The connection clamp is thus characterized through a simple configuration with few and relatively simple components.
In some embodiments the spring is configured symmetrical in longitudinal direction and arranged symmetrical to the contact surfaces of the power carrying element. As a consequence the two spring ends as a matter of principle have the same contact pressure and are thus suitable for connecting similar conductors, in particular conductors with identical cross sections. When the spring receivers shall be configured for connecting different conductors, in particular conductors with different cross sections, the different clamping pressure of both spring ends which is helpful for this application can be facilitated through an asymmetrical configuration of the spring and/or an asymmetrical arrangement of the spring with reference to the side walls.
In some embodiments the side walls, in particular the contact surfaces of the power carrying element are arranged substantially in parallel to one another. A totally parallel arrangement in the sense that the side walls are parallel to one another over their entire height and depth is thus not required. The side walls can be respectively bent outward e.g. in sections e.g. at their longitudinal ends so that they do not extend parallel to one another in these sections. The side walls or at least the contact surfaces of their power carrying element are respectively parallel to one another at least in partial portions. Thus, also two conductors to be contacted are insertable into the connection clamp essentially parallel to one another.
In some embodiments the side walls of the power carrying element include bulge. For example at least one contact surface can be arranged in the portion of the bulge. Also excessive opening of the spring can be prevented through the bulge forming a contact surface for the spring end.
In some embodiments of the connection clamp it is provided to load a spring with a tool, this means opening it for inserting or disengaging electrical conductors. For a tool e.g. a common screw driver or any other rod shaped tool is suitable. The connection clamp is e.g. configured so that the tool is insertable approximately from the direction of an insertable conductor e.g. parallel to the longitudinal direction of the conductor in order to form an intermediary space between the respective spring end and the side wall thus, e.g. the contact surface for inserting the conductor through pressing down an arm. Accordingly also the spring end with the pull safety edge can be lifted off from a previously inserted and clamped conductor in order to disengage it from the connection clamp without causing destruction. Thus, the tool only has to impact the spring itself but does not need to impact other components of the connection clamp. It can be provided that the spring is formed further for being loaded through the tool, e.g. through a notch where the tool can be engaged. Through the access of the longitudinal conductor orientation a space saving use of the connection clamp is feasible.
For the non destructive disengagement of the clamped conductor using the tool is typically necessary due to the pull safe self locking of the spring. Whether this also applies for inserting conductors depends from the spring force and the configuration of the respective conductor. In some embodiments of the connection conductor the spring force is sized so that the spring also has to be opened with the tool when the conductor is not yet inserted for inserting the conductor. The large spring force provides an even better and safer electrical connection. For mounting the conductors, however, in this case an additional step is required.
In other configurations however the spring force is sized so that solid conductors can be used without using a tool. Thus, the spring force is slightly less so that the spring opens through the conductor itself when inserting a fixed wire conductor of this type in that the conductor is inserted in the direction of the side wall and thus impacts the arm of the spring extending at a slant angle thereto so that the spring is loaded through the force transferred through the conductor and an intermediary space is created between the side wall, in particular the contact surface, and the spring end. Softer conductors, e.g. multi wire twisted strand conductors in this configuration however provide too little material resistance so that the pressure imparted upon the spring does not overcome its spring force when the conductors are inserted. For connecting such soft multi strand conductors (which is typically provided using lead end sleeves) the spring is therefore loaded by the tool.
According to another embodiment the connection clamp furthermore includes a clamp housing made from insulating material so that a safe use of the clamp is provided. The clamp housing includes recesses at the respective access locations for connecting the electrical conductors and for access of the tool to the spring.
In some embodiments the clamp housing includes at least two of the previously described power carrying elements including the associated spring and spring receiver. Thus at least four electrical conductors are electrically connectable with a connection clamp in that the at least two power carrying elements are electrically connected. In a particular embodiment the at least two power carrying elements can also be configured in one piece, e.g. at two ends of a continuous metal element.
Embodiments of the invention will now be described by way of example and with reference to the appended drawing, in which:
The connection clamp 1 in
The power carrying element 4 is configured for good power carrying capability as a one piece stamped part made from copper sheet material and includes two parallel side walls 7 which are used in particular at their inner opposing sides as a contact surface 7a (c.f.
For electrical contacting and mechanical clamping the electrical conductor is clamped with the spring 5 against the side wall 7, in particular the contact surface 7a. Thus, arms 8 with a pull safety edge 9 are configured at the spring end on both sides of the spring 5. For an inserted electrical conductor the pull safety edge 9 impresses into the surface of the conductor (not illustrated in the figures) due to the spring force of the spring 5. This way and through the angle □90° between the conductor and the arm 8 the inserted conductor is secured against being pulled out of the connection clamp 1. When no conductor is inserted the spring end 9 contacts the side wall 7 in the direction of the recess 2 in the portion of the protrusion 14 so that a minimum tension of the spring 5 is also provided for thin wires.
For inserting the conductor the spring 5 has to be preloaded due to its high spring force with a rod shaped tool 10, e.g. a screw driver, wherein further recesses 11 are provided for the tool 10 in the clamp housing 3. Thus, as illustrated in
Accordingly the tool 10 is required for disengaging an inserted and clamped conductor without destroying it in that the spring end 9 is lifted off from the conductor with the pull safety edge 9 in order to release the conductor.
The spring 5 is configured W-shaped and symmetrical along its longitudinal edge, wherein the arms 8 are respectively connected with a loop 13 through a shoulder 12. Thus the spring 5 is retained and supported by a spring receiver which includes essentially three supports 6a, 6b, 6c which are configured as protrusions of a housing wall of the clamp housing 3 and a portion of the housing wall itself. Also the spring 5 is partially covered by the power conducting element 4 and thus supported by the power conducting element. Furthermore the spring 5 is arranged symmetrical to the power conducting element 4.
Thus, the illustrated embodiment is particularly suitable for connecting conductors with identical cross sections. Other conceivable embodiments which are configured for contacting conductors with different cross sections include an asymmetrical spring 5 (thus arms 8 with different lengths) and/or an asymmetrical arrangement of the spring 5 with respect to the power carrying element 4.
Furthermore the support 6b is configured with respect to its cross section profile in the portions oriented towards the spring 5 essentially according to a minimum desired curvature radius of the spring 5 in order to prevent excessive bending of the spring 5. Furthermore the supports 6a, 6c in the portion of the shoulders 12 are enveloped by the spring 5 by more than 90° and the support 6b in the portion of the loop 13 is enveloped by approximately 180°, wherein the support 6b essentially completely fills the inner radius of the loop 13 in order to position the spring with negligible clearance. Overall this spring receiver provides independence with respect to the spring effect of both arms 8 so that optionally one or two conductors can be clamped or disengaged from one another through the single spring 5. Thus, the spring 5 is arranged not adjustable with respect to its spring force so that the connection clamp 1 is configured particularly simple, in particular without additional adjustment elements. However, it is also conceivable to use springs 5 with different spring constants.
Furthermore, the connection clamp 1 includes a screw clamp 16 which is electrically connected with the power carrying element 4 through an electrically conductive connection bar 17. Another conductor can be electrically connected through the screw clamp 16.
Another connection clamp 20 according to
Another alternative connection clamp 30 according to
Another connection clamp 40 according to
Although certain products constructed in accordance with the teachings of the invention have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary this patent covers all embodiments of the teachings of the invention fairly falling within the scope of the appended claims either literally or under the doctrine of equivalence.
Number | Date | Country | Kind |
---|---|---|---|
20 2010 014 149 U | Oct 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2988726 | Agron et al. | Jun 1961 | A |
4149766 | Stenz et al. | Apr 1979 | A |
4212509 | Brooks et al. | Jul 1980 | A |
6146186 | Barrat et al. | Nov 2000 | A |
6250950 | Pallai | Jun 2001 | B1 |
7115001 | Brockman et al. | Oct 2006 | B1 |
7329143 | Schrader | Feb 2008 | B2 |
7762834 | Schrader | Jul 2010 | B2 |
7833047 | Pizzi | Nov 2010 | B2 |
Number | Date | Country |
---|---|---|
20 2004 007 077 | Jun 2005 | DE |
Entry |
---|
Abstract for DE202004007077. |
European Search Report dated Jan. 9, 2012 for Application No. EP 11 00 8077. |
Number | Date | Country | |
---|---|---|---|
20120088394 A1 | Apr 2012 | US |