This invention relates generally to an electrical connection system, and more particularly to an electrical connection system having male and female connectors wherein the male connector has several male blade terminals that are plugged into mating female terminals of the female connector.
U.S. Pat. No. 6,435,910; U.S. Pat. No. 6,468,091; U.S. Pat. No. 6,546,586; U.S. Pat. No. 6,739,889 and U.S. Pat. No. 6,846,191 disclose typical examples of electrical connection systems, such as automotive electrical distribution centers, that have a male connector with a large number of male blade terminals that are plugged into mating female terminals of a female connector. These connection systems are designed with the tips of the male blade terminals all located at substantially the same height so that all of the male blade terminals touch the mating female terminals at substantially the same time. Consequently, considerable force, on the order of several hundred newtons, is required to plug the large number of male blade terminals into the mating female terminals for mating the electrical connectors and completing the electrical connection system
Due to high engagement forces these electrical connection systems typically include an auxiliary mechanical device to assist in plugging the male blade terminals into the mating female terminals. For instance, the automotive electrical distribution centers disclosed in U.S. Pat. No. 6,435,910; U.S. Pat. No. 6,468,091; and U.S. Pat. No. 6,546,586 employ a fastener assembly that includes a bolt that is driven by an operator using a power tool for plugging the male connector fully into the female connector of the electrical connection system. On the other hand, the electrical connection systems disclosed in U.S. Pat. No. 6,739,889 and U.S. Pat. No. 6,846,191 employ a lever mechanism that adds considerable complexity and cost to the electrical connection system. In any event, these auxiliary mechanical devices increase manufacturing cost, add design complexity and increase the size of the electrical connection system in an environment where space may be at a premium.
The electrical connection system of the invention accommodates a male connector having a larger number of male blade terminals that are plugged into mating female terminals of a female connector while reducing the engagement force required to mate the connectors. This at least results in simplifying and/or reducing the cost, complexity and/or size of any mechanical auxiliary device that may be required to mate the connectors.
In some instances, the engagement force may be reduced enough so that the connectors may be mated without any need for any auxiliary mechanical device, for example, a fastener assembly or a lever mechanism, to assist in plugging the male connector into the female connector. In this second aspect, the electrical connection system of the invention accommodates a larger number of male blade terminals being plugged into mating female terminals simply by applying an unassisted manual, engagement force. To take full advantage of the invention, the connectors are preferably mated with a peak engagement force of about 75 newtons or less; 75 newtons being a practical ergonomic limit for an unassisted manual operation.
In its broadest aspect, the electrical connection system of the invention positions the tips of the male blade terminals and/or the tips of the mating female terminals at different locations in a staggered arrangement thereby dissipating the required engagement force over a wider range of motion and reducing the peak engagement force required to mate the male and female connectors. This staggered arrangement allows a higher number of male blade terminals and mating female terminals that can be included in each single electrical connection system that can be completed with a given engagement force.
In another aspect, the engagement force is reduced enough so that the single electrical connection system can be completed manually without any assistance from any auxiliary mechanical device.
a and 5b are engagement force graphs; and
Referring now to
Referring now to
The population of terminals 18a and 18b may be in any proportion to achieve improved results. However, the populations are preferably equal, that is, the male terminals of male connector 15 are preferably 50% male blade terminals 18a and 50% shorter male blade terminals 18b to maximize the peak engagement force reduction. Of course, this is not possible with an odd number of terminals in which case, the number of terminals in each of the two populations should be as equal as possible.
a and 5b are graphs of the test results measuring the engagement force required to mate various electrical connection systems comprising male connectors having 28 and 48 male blade terminals and female connectors having a corresponding number of mating female terminals respectively. In each case, the engagement distance from the initial engagement or touch to an engagement of 6 mm is shown. The normal operating engagement in each case is from 4 mm to 5 mm as indicated at 30.
a are graphs of the test results for four 28 terminal test samples. In the first 28 terminal test sample, the male blade terminals had substantially the same height and the mating female terminals had substantially the same relative position in the female connector so that all the male blade terminals touched and plugged into the mating female terminals substantially simultaneously. The results which are plotted in the graph 32 in
In the second 28 terminal test sample, the male blade terminals were staggered with a 50% population having their blade tips 2 mm ahead of the tips of the other 50% population. The results which are plotted in graph 34 show a peak engagement force of about 100 newtons which occurs just before the operating engagement 30 at about 3.5 mm. Thus graphs 32 and 34 show that staggering 50% of the terminal population results in approximately a 33% reduction of the required engagement force, that is, from about 150 newtons to about 100 newtons. Thus it can be seen that the staggering arrangement of the invention results in a reduced engagement force required for mating connectors having multiple terminals.
In a third 28 terminal test sample, the terminals were arranged in a conventional manner as in the case of the first 28 terminal test sample. However the male blades were coated with polytetrafluoroethylene (PTFE) according to the disclosure of U.S. Pat. No. 6,254,979 granted to George Drew et al. Jul. 3, 2001, which is incorporated herein by reference. The results which are plotted in graph 36 shows a peak engagement force of about 96 newtons at about 1 mm. Consequently it appears that the staggered terminal arrangement results in more or less the same advantage as the use of low friction electrical terminals, that is, a reduction in the required engagement force of about 33%.
In a fourth 28 terminal test sample, the male blade terminals were staggered with a 50% population having their blade tips 2 mm ahead of the tips of the other 50% population and also coated with PTFE. The results which are plotted in graph 38 show a peak engagement force of about 38 newtons which occurs at about 2.8 mm. Thus the combination of staggered and coated low friction terminals yields a surprising and unexpected result in a required engagement force reduction of about 74%.
In the first 48 terminal test sample, the male blade terminals again had substantially the same height and the mating female terminals had substantially the same relative position in the female connector so that all the male blade terminals touched and plugged into the mating female terminals substantially simultaneously. The results which are plotted in the graph 40 in
In the second 48 terminal test sample, the male blade terminals were again staggered with a 50% population having their blade tips 2 mm ahead of the tips of the other 50% population. The results which are plotted in graph 42 show a peak engagement force of about 138 newtons which occurs just before the operating engagement 30. Thus graphs 32 and 34 also show staggering 50% of the terminal population results in approximately a 33% reduction of the required engagement force, that is, from about 205 newtons to about 138 newtons. Thus it appears that the staggering arrangement of the invention results in a reduced required engagement force that is more or less about the same for any number of terminals. In any event, it is clear that the staggered terminal arrangement allows a greater number of terminals in a connection system for a given required engagement force. Or stated another way, the required engagement force can be reduced for a given number of terminals by staggering the terminals.
In a third 48 terminal test sample, the terminals were arranged in a conventional manner as in the case of the first 48 terminal test sample. However the male blades were coated with polytetrafluoroethylene (PTFE) according to the disclosure of U.S. Pat. No. 6,254,979 granted to George Drew et al. Jul. 3, 2001. The results which are plotted in graph 46 shows a peak engagement force of about 95 newtons at about 1 mm which is a reduction of about 54%. While the staggered terminal arrangement results in more or less the same advantage regardless of the number of terminals, it appears that the use of low friction electrical terminals appears to have a larger advantage as the number of terminals increases.
In a fourth 48 terminal test sample, the male blade terminals were staggered with a 50% population having their blade tips 2 mm ahead of the tips of the other 50% population and also coated with PTFE. The results which are plotted in graph 46 show a peak engagement force of about 38 newtons which occurs at about 3.2 mm. Thus the combination of staggered, coated low friction terminals yields a surprising and unexpected result in a required engagement force reduction of about 81% even when the number of terminals are doubled.
In other words, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those described above, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the following claims and the equivalents thereof.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3711819 | Matthews | Jan 1973 | A |
| 4034172 | Glover et al. | Jul 1977 | A |
| 4483575 | Kruger et al. | Nov 1984 | A |
| 4867690 | Thumma | Sep 1989 | A |
| 5088931 | Niciolo et al. | Feb 1992 | A |
| 5176528 | Fry et al. | Jan 1993 | A |
| 5810623 | Regnier et al. | Sep 1998 | A |
| 6036549 | Wulff | Mar 2000 | A |
| 6254978 | Bahar et al. | Jul 2001 | B1 |
| 6435910 | Blasko et al. | Aug 2002 | B1 |
| 6468091 | Roussel et al. | Oct 2002 | B2 |
| 6478586 | Ma | Nov 2002 | B1 |
| 6524117 | Murakami et al. | Feb 2003 | B1 |
| 6547586 | Adduci | Apr 2003 | B2 |
| 6565372 | Bakker et al. | May 2003 | B2 |
| 6699049 | Wu | Mar 2004 | B1 |
| 6739889 | Daggett et al. | May 2004 | B1 |
| 6846191 | Hobbs et al. | Jan 2005 | B2 |
| 6960089 | Lee et al. | Nov 2005 | B2 |
| Number | Date | Country |
|---|---|---|
| 4-133280 | May 1992 | JP |