Electrical connections for harsh conditions

Information

  • Patent Grant
  • 7249968
  • Patent Number
    7,249,968
  • Date Filed
    Monday, August 16, 2004
    20 years ago
  • Date Issued
    Tuesday, July 31, 2007
    17 years ago
Abstract
Apparatuses are provided which basically comprise a socket which has at least two contiguous passages formed therein which are adapted to receive exposed wire and/or insulated wire. Bonding materials and crimp joints, alone or in combination, are provided to further secure the assemblies. In one embodiment, electrical connection assemblies are provided, which comprise an electrically conductive wire encapsulated by a sheath of insulating material, the insulating sheath having a first end, a first portion of the wire extending beyond the first end of the insulated sheath; and a socket having first and second contiguous passages formed therein, the first passage being of larger diameter than the second passage, the first portion of the wire being disposed in the second passage, the first end of the insulating sheath being disposed in the first passage. In other embodiments, the assemblies further comprise electrically conductive bonding material disposed in the first and second passages. Electrically conductive bonding material can bond the first portion of the wire to the second passage the first end of the insulating sheath to the second passage. Yet other embodiments have at least one crimp joint formed between the socket and either the exposed wire or the insulated wire. For example, a crimp joint can be formed between the first passage and first end of the insulating sheath. Another desirable crimp joint can be formed, alone or in combination with the crimp joint associated with the insulated sheath, between the second passage and the first portion of the wire. Further, in conjunction with one or more crimp joints, conductive bonding materials can also be used with the assemblies as described above. Methods of electrical communications utilizing such devices are also provided.
Description
FIELD OF THE INVENTION

The present invention relates to electrical connections, and more particularly to electrical connections suitable for withstanding harsh conditions.


BACKGROUND OF THE INVENTION

Electrical connections that can withstand harsh conditions, for example high pressures and exposure to high flow, are utilized in various applications. For example, in drilling applications, such as gas, oil or geothermal drilling, down hole environments can be exposed to pressures of 1,000 to 20,000 psi and flows containing muddy and/or rocky materials. It is often desirable to employ electronic sensing equipment in down hole environments to provide information about the conditions to a drill operator. Reliable electrical connections are important to ensure that information is reliably transmitted.


Some methods have been developed to create connections between an insulated wire and a socket, suitable for harsh applications, but the methods require, for example, creating a solder joint or crimping the socket to an exposed portion of the wire to make the electrical connection. These types of connection methods create assemblies that contain wire disposed between very rigid areas, such as insulation and the socket. A wire so disposed can be susceptible to failure from bending or tensile loads.


Hence, there exists a need to provide electrical connections which exhibit excellent strength characteristics. There also exists a need to create assemblies of a wire and a socket that are strong enough to absorb bending forces while ensuring excellent electrical conductivity. Finally, there is an on-going demand for providing electrical connections which remain functional for long periods of time under harsh conditions.


SUMMARY OF THE INVENTION

These needs and others are met by the methods and apparatuses of the present invention. The apparatuses basically comprise a socket which has at least two contiguous passages formed therein which are adapted to receive exposed wire and/or insulated wire such that forces exerted on the exposed wire are minimized. As such, it is an objective of the present invention to substantially disperse bending and tensile forces to areas of the electrical assemblies such as the wire insulation, bonding materials, and crimp joints. In one embodiment, electrical connection assemblies are provided, which comprise an electrically conductive wire encapsulated by a sheath of insulating material, the insulating sheath having a first end, a first portion of the wire extending beyond the first end of the insulated sheath; and a socket having first and second contiguous passages formed therein, the first passage being of larger diameter than the second passage, the first portion of the wire being disposed in the second passage, the first end of the insulating sheath being disposed in the first passage. In other embodiments, the assemblies further comprise electrically conductive bonding material disposed in the first and second passages. The electrically conductive bonding material bonds the first portion of the wire to the second passage the first end of the insulating sheath to the second passage.


Yet other embodiments have at least one crimp joint formed between the socket and either the exposed wire or the insulated wire. For example, a crimp joint can be formed between the first passage and first end of the insulating sheath. Another desirable crimp joint can be formed, alone or in combination with the crimp joint associated with the insulated sheath, between the second passage and the first portion of the wire. Further, in conjunction with one or more crimp joints, conductive bonding materials can also be used with the assemblies as described above.


For applications where the assemblies are exposed to, for example, mud and moisture, the assemblies can further comprise a boot surrounding the socket and a portion of the insulated sheath. In conjunction with the boot, it is optional to provide a coating of grease on an outer wall of the socket to facilitate overlaying the boot around the socket and portion of insulated wire.


In harsh environments, such as down holes of oil drilling applications, electrical assemblies in accordance with the present invention can include the wire being located in a subsurface environment and the socket being connected to a processor, wherein the processor is at substantially atmospheric conditions. In some cases, the wire is an antenna. The processor, thus, can process signals from the wire and send information about the down hole conditions to an operator at the surface.


Kits are also provided by the present invention which comprise an electrical socket having first and second contiguous passages formed therein, the first passage being of a larger diameter than the second passage, an electrically conductive bonding material, and instructions for creating an electrical connection with an insulated wire. In some instances, the kits can further comprise a boot.


Methods of making electrical connections are provided which comprise providing an electrically conductive wire encapsulated by a sheath of insulating material, wherein the insulating sheath has a first end and a first portion of the wire extends beyond said first end of said insulated sheath; providing a socket having first and second contiguous passages where the first passage has a larger diameter than the second passage; and inserting the first portion of the wire into the second passage and inserting the first end of the insulated sheath into the first passage.


The methods can further comprise inserting an electrically conductive bonding material into the first and second passages, wherein the electrically conductive bonding material bonds the first portion of the wire to the second passage and the first end of the insulating sheath to the second passage.


Other methods further comprise crimping the socket in the vicinity of the first passage so as to form a crimp joint between the first passage and first end of the insulating sheath. Also, it may be desirable, either alone or in combination with crimping the area of the first passage and insulated wire, to crimp the socket in the vicinity of the second passage so as to form a crimp joint between the second passage and the first portion of the wire. Further, methods can include inserting an electrically conductive bonding material into the socket passages in conjunction with one or more crimp joints.


In some embodiments, the method the steps of forming the crimp joint between the first passage and the first end of the insulating sheath are performed at a first gauge setting and the step of forming the crimp joint between the second passage and the first portion of the wire is performed at a second gauge setting which is set for a smaller diameter wire than the first gauge setting.


With respect to the sockets, in some instances sockets come in standard configurations which have a single passage, typically adapted to contain an exposed wire, formed therein. As such, methods in accordance with the present invention can further comprise counterboring the sockets to create an additional passage which is adapted to receive an insulated wire.


Yet other methods include inserting the socket and a portion of the insulated sheath into a boot. In addition, methods can further comprise coating an outer wall of the socket with grease.


In harsh environments, such as down holes of oil drilling applications, methods in accordance with the present invention can include transmitting information from a subsurface environment to a processor which is at substantially atmospheric conditions via an electrical connection.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be better understood, and its objectives and advantages will become apparent to those skilled in the art by reference to the following detailed description when taken in conjunction with the following drawings, in which:



FIG. 1 is a diagram, partially schematic, of a socket and an insulated wire in accordance with the present invention.



FIG. 2 is a schematic diagram of an insulated wire inserted into a socket in accordance with the present invention.



FIG. 3 is a schematic diagram of a boot overlaying a socket and wire assembly in accordance with the present invention.



FIG. 4A shows a transverse cross-section view taken through line a—a as depicted in FIG. 2.



FIG. 4B shows a transverse cross-section view taken through line b—b as depicted in FIG. 2.



FIG. 4C shows a transverse cross-section view taken through line c—c as depicted in FIG. 2





DETAILED DESCRIPTION

Referring to the drawings wherein the same reference numerals in different figures refer to like elements, FIG. 1 is a schematic of components of an electrical connection assembly, displaced from each other for sake of clarity. An electrically conductive wire 1 is encapsulated by a sheath of insulation 3 surrounding the wire. In some embodiments, a PEEK (polyetheretherketone) insulated wire is preferred because it is known to be very tough and high pressure capable, making it a good candidate for withstanding bending, tensions, and high pressure environments. An end of the wire and a portion of the insulated wire will be located within a socket 5, also made of electrically conductive material, which has at least two passages that are continuous with each other. A first passage 7 can be sized to hold a portion of insulated wire and a second passage 9 can be sized to hold wire. In a preferred embodiment, the first passage is 0.080″ long. The passages 7 and 9 are typically of different diameters. Preferably, but not intending to be limiting, the diameter of the first passage 7 is larger than the diameter of the second passage 9. In certain embodiments, more than two passages may be desirable, the diameters of the passages being adapted to fit wire or other electrically conductive material, in combination with or independent of insulating material and/or bonding material. By fitting a portion of insulated wire within the socket, the strength of the insulation can be used to withstand the stresses placed at the juncture of the insulated wire and the socket.


According to the current invention, the electrical connection is made by stripping a portion of the insulation 3 so as to expose the end of the conductive wire 1. The portion of the exposed wire 1 is inserted into the passage 9 and the adjacent portion of the insulation 3 is inserted into the larger passage 7.


With reference to FIGS. 2 and 4, in some embodiments, it is desirable to crimp the socket in the vicinity of the first passage 7 to create a first crimp joint 11 to substantially secure an end of the insulation sheath. For crimping the socket in the vicinity of the first passage 7 a setting for 14 gauge wire is preferred. In other embodiments, either alone or in conjunction with the first crimp joint 11, it may be desirable to crimp another area of the socket in the vicinity of the second passage 9 to create a second crimp joint 13 to substantially secure the exposed wire and create electrical contact. A crimp that is set for 16 gauge wire is preferred for the vicinity of the second passage. The crimped areas 11 and 13 create a mechanical lock between the socket and wire. It is helpful to avoid overcrimping the areas to avoid weakening the insulation or exposed wire. A very strong electro-mechanical connection is created by a double crimp which creates an assembly that can withstand harsh conditions, such as high pressure, large bending, and tensile loads.


An electrically conductive bonding material 15, for example, electrically conductive epoxy LOCITE® 3880 (Supplied by Locite Corp., Hartford, Conn.), can be inserted into the socket and come in substantial contact with the exposed wire and the portion of insulated wire that is located in the socket. The bonding material provides electrical contact while providing a bond between the wire and the socket and between the insulated portion and the socket, which provides added strength to the connection assembly. Although not depicted in the figures, it is conventional to have a weep hole that passes through the socket wall to the passage area of the socket. Upon crimping, epoxy typically oozes out of the weep hole and around the insulated wire.


With reference to FIG. 3, as is conventional, a boot 17 can be placed to cover both the insulated wire adjacent the socket and the socket itself. The boot serves to protect the area where the insulated wire enters the socket from things that can interfere with the integrity of the electrical connection, for example, moisture and debris that are present in the down hole.


In some circumstances, such as when the electrical connection is part of the antenna of a downhole assembly in a drill string, it is desirable to place a support under the boot and adjacent insulated wire and to encapsulate the assembly in RTV. A metal cover plate is secured around the assembly.


The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof an, accordingly, reference should be made to the appended claims, rather the foregoing specification, as indicating the scope of the invention.

Claims
  • 1. An electrical connection assembly comprising: an electrically conductive wire encapsulated by a sheath of insulating material, said insulating sheath having a first end, a first portion of said wire extending beyond said first end of said insulated sheath;a unitary socket having first and second contiguous and axially aligned passages formed therein, said first passage being of larger diameter than said second passage, said first portion of said wire being disposed in said second passage, a first portion of said insulating sheath adjacent said first end being disposed in said first passage; anda crimp joint formed between said first passage and first portion of said insulating sheath.
  • 2. An electrical connection assembly comprising: an electrically conductive wire encapsulated by a sheath of insulating material, said insulating sheath having a first end, a first portion of said wire extending beyond said first end of said insulated sheath;a unitary socket having first and second contiguous and axially aligned passages formed therein, said first passage being of larger diameter than said second passage, said first portion of said wire being disposed in said second passage, a first portion of said insulating sheath adjacent said first end being disposed in said first passage; anda crimp joint formed between said second passage and said first portion of said wire.
  • 3. The electrical connection assembly of claim 2 further comprising a second crimp joint formed between said first passage and first portion of said insulating sheath.
  • 4. The electrical connection assembly of claim 3 further comprising electrically conductive bonding material disposed in said first and second passages, said electrically conductive bonding material bonding said first portion of said wire to said second passage of said socket and bonding said first portion of said insulating sheath to said second passage of said socket.
  • 5. An electrical connection assembly comprising: an electrically conductive wire encapsulated by a sheath of insulating material, said insulating sheath having a first end, a first portion of said wire extending beyond said first end of said insulated sheath;a socket forming an exterior surface enclosing first and second contiguous and axially aligned passages extending axially into said socket, said first passage being of larger diameter than said second passage, said first portion of said wire being disposed in said second passage, a first portion of said insulating sheath adjacent said first end being disposed in said first passage; anda first crimp joint and a second crimp joint formed in said exterior surface of said socket, wherein said first crimp joint and said second crimp joints are axially displaced along said exterior surface of said socket so that said first crimp joint is axially aligned with said first passage and said second crimp joint is axially aligned with said second passage, and wherein said socket exterior surface is permanently deformed by said first crimp joint so as to secure said insulating sheath first portion into said first passage, and wherein said socket exterior surface is permanently deformed by said second crimp joint so as to secure said first wire portion into said second passage.
  • 6. The electrical connection assembly of claim 5, wherein said first crimp joint is formed between said first passage and first portion of said insulating sheath; and said second crimp joint is formed between said second passage and said first portion of said wire.
  • 7. The electrical connection assembly of claim 5 further comprising electrically conductive bonding material disposed in said first and second passages, said electrically conductive bonding material bonding said first portion of said wire to said second passage of said socket and bonding said first portion of said insulating sheath to said second passage of said socket.
US Referenced Citations (31)
Number Name Date Kind
3753193 Teagno et al. Aug 1973 A
4482296 Wassell et al. Nov 1984 A
4482297 Mosimann et al. Nov 1984 A
4684326 Wassell et al. Aug 1987 A
4779352 Lang Oct 1988 A
5126564 Perry et al. Jun 1992 A
5134285 Perry et al. Jul 1992 A
5134783 Perry Aug 1992 A
5135059 Turner et al. Aug 1992 A
5144126 Perry et al. Sep 1992 A
5216242 Perry et al. Jun 1993 A
5226332 Wassell Jul 1993 A
5251708 Perry et al. Oct 1993 A
6102681 Turner Aug 2000 A
6105690 Biglin, Jr. et al. Aug 2000 A
6123561 Turner et al. Sep 2000 A
6134892 Turner et al. Oct 2000 A
6257356 Wassell Jul 2001 B1
6285014 Beck et al. Sep 2001 B1
6491546 Perry Dec 2002 B1
6507401 Turner et al. Jan 2003 B1
6547016 Wassell Apr 2003 B2
6622803 Harvey et al. Sep 2003 B2
6634427 Turner et al. Oct 2003 B1
6707556 Turner et al. Mar 2004 B2
6714138 Turner et al. Mar 2004 B1
20020011358 Wassell Jan 2002 A1
20050142937 Lin Jun 2005 A1
20050181667 Kao Aug 2005 A1
20050181669 Holland Aug 2005 A1
20050221669 Kodaira Oct 2005 A1