The present invention provides an electrical connector and a conducting terminal used therein; particularly, the present invention provides an electrical connector that can be used by coupling with another one as a pair.
A conducting terminal of a conventional electrical connector is composed of a longitudinal axis and a proximal end as well as a distal end extended along the longitudinal axis, and embedded in an insulating housing. Therein, an engaging surface of the proximal end is used for electrical signal connection so as to achieve electrical conduction between connectors. However, frequent use of the conventional conducting terminal will cause breakage of the conducting terminal because of the destructing force accumulated on the engaging surface between the proximal end and the distal end of the conducting terminal. As a result, the electrical connector will eventually lose electrical signal connection. The U.S. Pat. No. 3,259,870, herein referred to as Prior Art 1, provides an electrical connector, utilizing a cylindrical portion 20 and a terminal member 22 to form a conducting terminal. The conducting terminal is connected to a leaf spring 28 through a groove 26, and formed into an electrical connector with an insulating housing 14. The connecting interface of the cylindrical portion 20 and the terminal member 22 is not designed with a strong structure, and thus the conducting terminal will break and lose its effect after frequent plugging and unplugging. Additionally the U.S. Pat. No. 3,909,099, herein referred to as Prior Art 2, also provides an electrical connector, utilizing a back cylindrical terminal member 16 to form a conducting terminal. The conducting terminal and a spring 20 are connected, and formed into an electrical connector with an insulating housing 14. The connecting interface of the back cylindrical portion 22 is not designed with a strong structure, and thus the conducting terminal will break and lose its effect after frequent plugging and unplugging. Finally, the U.S. Pat. No. 7,153,152, herein referred to as Prior Art 3, provides an electrical connector; wherein a conducting terminal 14 in use therewith has a proximal end 16 with an engaging surface 30 so as to engage with a supporting spring.
The connecting interface of the back cylindrical terminal member and the front portion of the conventional conducting terminal are not designed with a strong structure, and thus the conducting terminal will break and lose its effect after frequent plugging and unplugging. Therefore, there is a need for improvement in this field of art.
To solve the aforementioned problems, the present invention provides an electrical connector with high structural strength; wherein, a conducting terminal used in the electrical connector includes a longitudinal axis and a proximal end, a lumbar portion and a distal end extended along the longitudinal axis. The proximal end is bent in a waved form so as to provide a elastically deforming capability. A free end of the proximal end is provided with an engaging surface. The distal end is in a barrel shape. A prop surface is provided at the distal end adjacent to the lumbar portion. A supporting means is protruded from the lumbar portion toward the prop surface. The engaging surface and the lumbar portion have respective normal lines thereof intersecting with the longitudinal axis.
Thus, an object of the present invention is to provide an electrical connector with a conducting terminal, wherein the conducting terminal has improved structural strength.
Another object of the present invention is to provide an electrical connector with a conducting terminal, wherein the conducting terminal has a longer lifetime.
Yet another object of the present invention is to provide a conducting terminal of an electrical connector having improved structural strength.
Yet another object of the present invention is to provide a conducting terminal of an electrical connector having a longer lifetime.
Yet another object of the present invention is to provide a fabrication method of a conducting terminal, wherein the conducting terminal has improved structural strength.
Yet another object of the present invention is to provide a fabrication method of a conducting terminal of an electrical connector having a longer lifetime.
Since the present invention provides an electrical connector and a conducting terminal as well as a fabrication method of the conducting terminal, the principle of electrical conduction utilized has already been disclosed in the prior art, and thus description with regards to the method of electronic conduction and electrical signal transmission will not be explained in detail. The drawings shown are not depicted in actual size and are only intended to express schematic views of the characteristics of the present invention.
First, please refer to
The distal end 54 is in a barrel shape. If it is fabricated by metal stamping, then a slit is formed along the longitudinal axis thereof; if it is made from a tubular part, then it is formed in a simple barrel shape. Between the distal end 54 and the proximal end 52, there is the lumbar portion 53. The lumbar portion 53 is mainly used as a buffer portion intermediating between the varied structures of the terminal. However, due to the repeated plugging of the conducting terminal, fatigue stress is generally concentrated in this portion. A prop surface 55 is provided at the distal end 54 adjacent to the lumbar portion 53 for contacting with a supporting means 56, and dissipating the fatigue stress thereto so as to reduce the deformation.
In order to improve the structural strength of the lumbar portion 53, the present invention provides the supporting means 56 extended from the lumbar portion 53 toward the prop surface 55. As a result, the conducting terminal 50 can be prevented form being destroyed under an excessive deformation caused by an excessively applied force. In the preferred embodiment, the supporting means 56 is configured in pairs and extended from the two sides of the lumbar portion toward the prop surface 55. The supporting means 56 is in a flat shape, or a curved shape, or in any other structure so as to enhance the stiffness against to the deformation; wherein it is preferred to have a clearance between the supporting means 56 and the prop surface 55 so as to provide a buffer space for the deformation of the conducting terminal. In order to achieve a better electrical contact and stiffness, the lumbar portion 53 is configured in the manner that the third normal line N3 thereof intersects the longitudinal axis 51 at an intersection angle θ3 between 40 and 80 degrees. Similarly, the engaging surface 522 is configured in the manner that the first normal line N1 normal line thereof intersects the longitudinal axis 51 at an intersection angle θ1 between 40 and 80 degrees. The engaging surface 522 is further provided with a slanting portion 523. Furthermore, the slanting portion 523 is configured in the manner that a second normal line N2 thereof intersects the longitudinal axis 51 an intersection angle θ2 smaller than the angle θ1 between the first normal line N1 of the engaging surface 522 and the longitudinal axis 51. Particularly, the angle θ2 is between 10 and 40 degrees and preferably at 15 degrees.
Material of the conducting terminal 50 may be preferably selected with high conductivity, such as brass, bronze, copper alloy, aluminum, aluminum alloy, or gold, etc.
For the purpose of high stiffness, material of the conducting terminal 50 may be preferably selected such as stainless steel, K gold, or platinum, etc.
Refer to
The characteristics of the conducting terminal 50 used in the electrical connector are described in the first embodiment.
In this second preferred shown in
Refer to
The distal end 74 is in a barrel shape. If it is fabricated by metal stamping, then a slit is formed along the longitudinal axis; if it is directly make form a tubular part, then it is formed in a simple barrel shape. Between the distal end 74 and the proximal end 72, there is the lumbar portion 73. The lumbar portion 73 is mainly used as a buffer portion intermediating between the varied structures of the terminal. However, due to the repeated plugging of the conducting terminal, fatigue stress is generally concentrated in this portion. A prop surface 75 is provided at the lumbar portion 73 for contacting with a supporting means 76, and dissipating the fatigue stress thereto so as to reduce the deformation.
In order to improve the structural strength of the lumbar portion 73, the present invention provides the supporting means 76 extended from the distal end 74 toward the prop surface 75. As a result, the conducting terminal 70 can be prevented form being destroyed under an excessive deformation caused by an excessively applied force. In the preferred embodiment, the supporting means 76 is configured in pairs and is shaped in a flat shape, a curved shape or any other structure so as to enhance the stiffness to the deformation; wherein it is preferred to have a clearance between the supporting means 76 and the prop surface 75 so as to provide a buffer space for the deformation of the conducting terminal. In order to achieve better electrical contact and stiffness, the prop surface 75 is configured in the manner that a normal line thereof intersects the longitudinal axis 71 at an intersection angle between 40 and 80 degrees. Similarly, the engaging surface 722 is configured in the manner that a normal line thereof intersects the longitudinal axis 71 at an intersection angle between 40 and 80 degrees. The engaging surface 722 is further provided with a slanting portion 723. Furthermore, the slanting portion 723 is configured in the manner that a normal line thereof intersects the longitudinal axis 71 at an intersection angle smaller than that between the normal lines of the engaging surface 722 and the longitudinal axis 71. Particularly, the angle is between 10 and 40 degrees and preferably at 15 degrees.
In order to provide a better structural strength, the above-mentioned prop surface 75 can also be fabricated by metal forming to a curved shape. Although it has more than one normal direction, the structural strength is still good.
Material of the conducting terminal 50 may be preferably selected with high conductivity, such as brass, bronze, copper alloy, aluminum, aluminum alloy, or gold, etc.
For the purpose of high stiffness, material of the conducting terminal 50 may be preferably selected such as stainless steel, K gold, or platinum, etc.
The present invention further provides a fourth preferred embodiment. Refer to
The characteristics of the conducting terminal 70 are the same as described in the third embodiment.
In this preferred embodiment, the electrical connector 80 has a pair of conducting terminals 70. However, in other configuration, the electrical connector 80 may have one conducting terminal 70, or more than three conducting terminals 70.
The above-mentioned preferred embodiments in accordance with the present invention are not meant to limit claims set forth below. Those skilled in the art should understand and be able to implement the above description. Thus, any substantially equivalent modifications or changes thereof should be in the claimed scope set forth.
Number | Date | Country | Kind |
---|---|---|---|
96124600 A | Jul 2007 | TW | national |
This application is a continuation of application Ser. No. 12/003,444 filed on Dec. 26, 2007 now U.S. Pat. No. 7,628,630.
Number | Name | Date | Kind |
---|---|---|---|
3259870 | Winkler | Jul 1966 | A |
3909099 | Winkler | Sep 1975 | A |
6790067 | Douty et al. | Sep 2004 | B2 |
7001194 | Yang et al. | Feb 2006 | B2 |
7108534 | Fabian | Sep 2006 | B2 |
7153152 | Eby et al. | Dec 2006 | B1 |
7494359 | Ragnarsson | Feb 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20100041282 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12003444 | Dec 2007 | US |
Child | 12581962 | US |