This non-provisional application claims priority to and the benefit of, pursuant to 35 U.S.C. § 119(a), patent application Serial No. CN202010311135.5 filed in China on Apr. 20, 2020. The disclosure of the above application is incorporated herein in its entirety by reference.
Some references, which may include patents, patent applications and various publications, are cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference were individually incorporated by reference.
The present invention relates to an electrical connector and a connector assembly, and particularly to an electrical connector and a connector assembly having conductive terminals arranged at unequal pitches.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
An existing connector assembly includes an electrical connector and a mating component mated with each other. A plurality of conductive terminals arranged at equal pitches in the electrical connector and a plurality of mating terminals arranged at equal pitches in the mating component are one-to-one conductively connected, thus facilitating signal transmission between the electrical connector and the mating component. For example, the electrical connector is a card edge connector meeting the Peripheral Component Interconnect Express (PCI-E) transmission protocol, and the mating component is an electronic card. According to the PCI-E standard, in the electronic card using the transmission protocol, the conductive pads are arranged at equal pitches. Thus, to match with the conductive pads at equal pitches, in the related art, the electrical connector matching with the standard PCI-E electronic card generally has the conductive terminals at equal pitches, and a distance between two adjacent conductive terminals is equal to a distance between two adjacent conductive pads. Further, the conductive terminals are used to provide conductive paths for transmission of electrical signals, and electrical coupling may be formed between each of the conductive terminals. With the updates and new versions of the PCI-E protocol, the signal transmission speed required becomes higher, and the electrical coupling formed by the conventional conductive terminals at equal pitches does not help the electrical connector to increase the signal transmission speed and to satisfy the requirement of the new version of the PCI-E protocol.
Therefore, a heretofore unaddressed need to design an improved electrical connector and a connector assembly exists in the art to address the aforementioned deficiencies and inadequacies.
The present invention is directed to an electrical connector and a connector assembly having conductive terminals arranged at unequal pitches.
To achieve the foregoing objective, the present invention adopts the following technical solutions.
An electrical connector includes: a base; and a row of conductive terminals, provided in the base, and comprising at least one pair of differential signal terminals and a plurality of ground terminals, wherein each of the conductive terminals has a contact portion configured to be in contact with a mating component, the row of conductive terminals comprises at least one terminal group, and each of the at least one terminal group comprises two of the ground terminals and one pair of the at least one pair of differential signal terminals located between the two of the ground terminals; wherein in each of the at least one terminal group, a pitch between the two contact portions of the one pair of differential signal terminals is defined as a first pitch, a pitch between the contact portion of each differential signal terminal of the one pair of differential signal terminals and the contact portion of a corresponding one of the two of the ground terminals adjacent thereto is defined as a second pitch, and the first pitch is less than the second pitch; and wherein another ground terminal of the ground terminals is provided to be adjacent to each of the at least one terminal group, a pitch between the contact portion of the another ground terminal and the contact portion of an adjacent one of the two of the ground terminals in each of the at least one terminal group is defined as a third pitch, and the third pitch is greater than the second pitch.
In certain embodiments, the base has an insertion slot downward concavely formed on an upper surface thereof and two side walls located at two opposite sides of the insertion slot, one of the two side walls has a plurality of accommodating holes correspondingly accommodating the row of the conductive terminals, the one of the two side walls further has a plurality of through holes corresponding to the accommodating holes, each of the through holes runs through an outer surface of the one of the two side walls and is in communication to a corresponding one of the accommodating holes, and in a vertical direction, a length of each of the through holes corresponding to one of the ground terminals is greater than a length of each of the through holes corresponding to one of the differential signal terminals.
In certain embodiments, the electrical connector further includes a shielding sheet, provided on the outer surface of the one of the two side walls and having a plurality of elastic sheets correspondingly protruding toward the ground terminals, wherein the elastic sheets pass through the through holes and are electrically connected to the corresponding ground terminals.
In certain embodiments, the shielding sheet has a plurality of teeth protruding downward from a lower edge thereof, and the teeth cover the through holes corresponding to the differential signal terminals.
In certain embodiments, each of the conductive terminals has a conductive portion configured to be in contact with a circuit board, and in the row of conductive terminals, a pitch between the two conductive portions of two adjacent ones of the conductive terminals is equal to a pitch between the two contact portions of the two adjacent ones of the conductive terminals.
In certain embodiments, each of the conductive terminals further has a connecting portion connecting the contact portion and the conductive portion, and in the row of conductive terminals, a pitch between the two connecting portions of the two adjacent ones of the conductive terminals is equal to the pitch between the two contact portions of the two adjacent ones of the conductive terminals.
In certain embodiments, the electrical connector includes two rows of conductive terminals, wherein the base has an insertion slot and two side walls, the insertion slot is downward concavely formed on an upper surface of the base along a vertical direction and extends along an elongated direction, the two side walls are located at two opposite sides of the insertion slot in a lateral direction, the elongated direction, the lateral direction and the vertical direction are perpendicular to one another, the two rows of conductive terminals are respectively provided on the two side walls, each row of conductive terminals, comprises a plurality of pairs of the differential signal terminals, and the pairs of differential signal terminals of the two rows of conductive terminals are provided to stagger in the elongated direction.
A connector assembly includes: an electrical connector, comprising a base and a row of conductive terminals provided in the base, wherein the row of the conductive terminals comprises at least one pair of differential signal terminals and a plurality of ground terminals; and a mating component mated with the electrical connector, wherein the mating component has a plurality of conductive pads arranged at equal pitches, each of the conductive terminals has a contact portion configured to be in contact with one of the conductive pads, the row of conductive terminals comprises at least one terminal group, and each of the at least one terminal group comprises two of the ground terminals and one pair of the at least one pair of differential signal terminals located between the two of the ground terminals; wherein in each of the at least one terminal group, a pitch between the two contact portions of the one pair of differential signal terminals is defined as a first pitch, a pitch between the contact portion of each differential signal terminal of the one pair of differential signal terminals and the contact portion of a corresponding one of the two of the ground terminals adjacent thereto is defined as a second pitch, and the first pitch is less than the second pitch and a pitch between two adjacent ones of the conductive pads; and wherein another ground terminal of the ground terminals is provided to be adjacent to each of the at least one terminal group, a pitch between the contact portion of the another ground terminal and the contact portion of an adjacent one of the two of the ground terminals in each of the at least one terminal group is defined as a third pitch, and the third pitch is greater than the second pitch.
In certain embodiments, the base is provided with a plurality of accommodating holes to correspondingly accommodate the row of conductive terminals, a partition is provided between each two adjacent ones of the accommodating holes, a width of the partition between the one pair of differential signal terminals is defined as a first width, a width of the partition between each differential signal terminal of the one pair of differential signal terminals and the corresponding one of the two of the ground terminals adjacent thereto is defined as a second width, a width of the partition between the adjacent one of the two of the ground terminals in each of the at least one terminal group and the another ground terminal adjacent to each of the at least one terminal group is defined as a third width, the first width is less than the second width, and the second width is less than the third width.
In certain embodiments, before the row of conductive terminals are assembled to the base, the conductive terminals are connected to a strip at equal pitches.
In certain embodiments, the row of conductive terminals comprises two terminal groups adjacent to each other, and in the two terminal groups adjacent to each other, a pitch between the two ground terminals provided to be adjacent to each other is defined as the third pitch.
In certain embodiments, the mating component is an electronic card meeting with a Peripheral Component Interconnect Express (PCI-E) standard.
In certain embodiments, the base has an insertion slot downward concavely formed on an upper surface thereof and two side walls located at two opposite sides of the insertion slot, one of the two side walls has a plurality of accommodating holes correspondingly accommodating the row of the conductive terminals, the one of the two side walls further has a plurality of through holes corresponding to the accommodating holes, each of the through holes runs through an outer surface of the one of the two side walls and is in communication to a corresponding one of the accommodating holes, the electrical connector further comprises a shielding sheet provided outside the one of the two side walls, the shielding sheet has a plurality of elastic sheets correspondingly protruding toward the ground terminals, the elastic sheets pass through the through holes and are electrically connected to the corresponding ground terminals, and in a vertical direction, a length of each of the through holes corresponding to one of the ground terminals is greater than a length of each of the through holes corresponding to one of the differential signal terminals.
A connector assembly includes: an electrical connector, comprising a base and a row of conductive terminals provided in the base, wherein the row of the conductive terminals comprises at least one pair of differential signal terminals and a plurality of ground terminals; and a mating component mated with the electrical connector, wherein the mating component has a plurality of conductive pads provided in a row along an elongated direction, each of the conductive pads has a first virtual center line, each of the conductive terminals has a contact portion in contact with one of the conductive pads, the contact portion of each of the conductive terminals has a second virtual center line, the row of conductive terminals comprises at least one terminal group, and each of the at least one terminal group comprises two of the ground terminals and one pair of the at least one pair of differential signal terminals located between the two of the ground terminals; wherein in each of the at least one terminal group, a pitch between the two contact portions of the one pair of differential signal terminals is defined as a first pitch, a pitch between the contact portion of each differential signal terminal of the one pair of differential signal terminals and the contact portion of a corresponding one of the two of the ground terminals adjacent thereto is defined as a second pitch, the first pitch is less than the second pitch, and the second virtual center line of the contact portion of each of the conductive terminals is offset in the elongated direction from the first virtual center line of a corresponding one of the conductive pads toward a location between the contact portions of the one pair of differential signal terminals; and wherein another ground terminal of the ground terminals is provided to be adjacent to each of the at least one terminal group, a pitch between the contact portion of the another ground terminal and the contact portion of an adjacent one of the two of the ground terminals in each of the at least one terminal group is defined as a third pitch, and the third pitch is greater than the second pitch.
In certain embodiments, the differential signal terminals and the ground terminals have identical structures.
In certain embodiments, each of the conductive terminals further has a conductive portion configured to be in contact with a circuit board and a connecting portion connecting the contact portion and the conductive portion, and a pitch between the two conductive portions of two adjacent ones of the conductive terminals is equal to a pitch between the two contact portions of the two adjacent ones of the conductive terminals, and is also equal to a pitch between the two connecting portions of the two adjacent ones of the conductive terminals.
In certain embodiments, the conductive portion of each of the conductive terminals has a third virtual center line, the circuit board has a plurality of conduction pads provided in a row in the elongated direction, each of the conduction pads has a fourth virtual center line, the conductive portion of each of the conductive terminals is electrically connected to a corresponding one of the conduction pads, and in each of the at least one terminal group, the third virtual center line of the conductive portion of each of the conductive terminals is offset in the elongated direction from the fourth virtual center line of the corresponding one of the conduction pads toward the location between the contact portions of the one pair of differential signal terminals.
In certain embodiments, the second virtual center line and the third virtual center line are provided on a same plane.
In certain embodiments, the conductive terminals are symmetrical relative to the plane defined by the second virtual center line and the third virtual center line.
In certain embodiments, the mating component is an electronic card meeting with a Peripheral Component Interconnect Express (PCI-E) standard.
Compared with the related art, certain embodiments of the present invention has the following beneficial effects. Firstly, the first pitch is less than the second pitch, and the second pitch is less than the third pitch. That is, in each terminal group, the one pair of differential signal terminals and the two ground terminals located at the two sides of the one pair of differential signal terminals are all close to the location between the one pair of differential signal terminals. Corresponding to two adjacent terminal groups, the two pairs of differential signal terminals are relatively away from each other, thereby reducing the parasitic capacitance coupling between the two pairs of differential signal terminals, and further reducing the interference between the two pairs of differential signal terminals. Secondly, in one terminal group, the one pair of differential signal terminals are close to each other, which helps the differential signal to maintain stable and to withstand the outside electromagnetic interference. Further, the one pair of differential signal terminals are close to each other, which helps the coupling electromagnetic field formed by each differential signal terminal of the one pair of differential signal terminals to the corresponding ground terminal to counteract with each other, reducing the outward interference of the one pair of differential signal terminals. Thirdly, in one terminal group, the ground terminals are also close to the one pair of differential signal terminals, facilitating shielding of the outer interference thereof, and the ground terminals are close to the one pair of differential signal terminals, increasing the coupling of the one pair of differential signal terminals to the ground terminals, and further enhancing the inhibition by the ground terminals to the common mode signal composition of the outer interference formed on the one pair of differential signal terminals.
These and other aspects of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
The accompanying drawings illustrate one or more embodiments of the disclosure and together with the written description, serve to explain the principles of the disclosure. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment, and wherein:
The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like components throughout the views. As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Moreover, titles or subtitles may be used in the specification for the convenience of a reader, which shall have no influence on the scope of the present invention.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
As used herein, “around”, “about” or “approximately” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around”, “about” or “approximately” can be inferred if not expressly stated.
As used herein, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Thus, the three types of partitions 122 respectively correspond to the three types of pitches of the terminals, forming the relationships that the first pitch P1 is less than the second pitch P2, and the second pitch P2 is less than the third pitch P3.
As shown in
The electrical connector and the connector assembly according to certain embodiments of the present invention have the following beneficial effects:
1. As shown in
2. The pairs of the differential signal terminals 2a of the two rows of conductive terminals 2 are provided to stagger in the elongated direction, reducing the interference of the different pairs of differential signal terminals 2a to each other in the lateral direction.
3. The plug 5 made of the insulating material is added between the two rows of the conductive terminals 2 in the lateral direction, thus increasing the dielectric coefficient of the medium between the two rows of the conductive terminals 2, and reducing the interference of the different pairs of differential signal terminals 2a to each other in the lateral direction. Further, the fins 52 enter the corresponding accommodating holes 121 accommodating the differential signal terminals 2a, thus adjusting the dielectric coefficient of the medium around the differential signal terminals 2a, such that the differential signal terminals 2a satisfy the high frequency requirement.
4. The length of each of the through holes 123 corresponding to the ground terminals 2b is greater than the length of each of the through holes 123 corresponding to the differential signal terminals 2a, thus enhancing the coupling of the differential signal terminals 2a to the ground terminals 2b, and further helping the inhibition to the common mode interference. By providing the teeth 33, the shielding areas of the shielding sheets 3 to the differential signal terminals 2a are increased, which helps reducing the outer environmental interference to the differential signal terminals 2a.
The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
Number | Date | Country | Kind |
---|---|---|---|
202010311135.5 | Apr 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7727028 | Zhang | Jun 2010 | B1 |
7963806 | Scott Kline | Jun 2011 | B1 |
9601851 | Jacoby | Mar 2017 | B2 |
11151300 | Lloyd | Oct 2021 | B2 |
11152729 | Martens | Oct 2021 | B2 |
20030176110 | Wu | Sep 2003 | A1 |
20100068939 | Xu | Mar 2010 | A1 |
20110201234 | Long | Aug 2011 | A1 |
20120214351 | Shiratori | Aug 2012 | A1 |
20130115824 | Briant | May 2013 | A1 |
20130273781 | Buck | Oct 2013 | A1 |
20130316585 | McGrath | Nov 2013 | A1 |
20150079843 | Nakashima | Mar 2015 | A1 |
20150162713 | Tsai | Jun 2015 | A1 |
20170365954 | Chen | Dec 2017 | A1 |
20190348783 | Chen | Nov 2019 | A1 |
20200395698 | Hou | Dec 2020 | A1 |
20210153351 | Li | May 2021 | A1 |
20210218193 | Feng | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1617396 | May 2005 | CN |
100546105 | Sep 2009 | CN |
101685912 | Apr 2013 | CN |
102290655 | Dec 2013 | CN |
102195173 | Jun 2015 | CN |
207052871 | Feb 2018 | CN |
107658654 | Apr 2019 | CN |
209860271 | Dec 2019 | CN |
108448287 | Jan 2020 | CN |
Number | Date | Country | |
---|---|---|---|
20210328369 A1 | Oct 2021 | US |