This application claims the priority benefit of Chinese Patent Application Serial Number 202011011148.7, filed on Sep. 23, 2020, the full disclosure of which is incorporated herein by reference.
The present disclosure relates to the technical field of connector, particularly to an electrical connector and an electrical connector assembly.
Conventional Gen Z connectors can be applied to perform circuit board-to-circuit board connection and circuit line-to-circuit board connection. The circuit board-to-circuit board connections are vertical connection, right angle connection, straddle mount connection and orthogonal connection. In the straddle mount connection, two sides of the electrical connector are provided with securing lugs for securing the circuit board. When the connector is electrically connected to the circuit board, the securing lugs of the connector corresponds to the circuit board, and one end of a screw is threaded through the securing lug to be secured onto the circuit board. Thus, the connector can be secured onto the circuit board. Since the securing lug of conventional electrical connectors is designed in a size that is quite space-occupying, they would highly affect the follow-up modifications in circuit board design and assembly.
The embodiments of the present disclosure provide an electrical connector and an electrical connector assembly tended to solve the problem that the size of the securing lug of the conventional electrical connector is oversized and space-occupying, which affects the circuit board design and assembly.
On the first aspect, the present disclosure provides an electrical connector comprising a connector and a securing member. The connector comprises a body and a connecting terminal port. The connecting terminal port is disposed at one side of the body. The securing member comprises a securing part and a clamping part. The securing part is assembled on the body and is disposed at one side of the connecting terminal port. The clamping direction of the clamping part is the same as the opening direction of the connecting terminal port.
On the second aspect, the present disclosure provides an electrical connector assembly comprising an electrical connector according to the first aspect and a mating circuit board. The electrical connector further comprises a connecting port disposed at one side of the body away from the connecting terminal port. The mating circuit board is plugged in the connecting port.
In the embodiments of the present disclosure, the securing member can be assembled according to the shape and structural configuration of the body through a component of the securing member corresponding to one side of the body of the connector to minimize the space that the securing member occupies thereby to reduce the overall size of the electrical connector.
It should be understood, however, that this summary may not contain all aspects and embodiments of the present disclosure, that this summary is not meant to be limiting or restrictive in any manner, and that the disclosure as disclosed herein will be understood by one of ordinary skill in the art to encompass obvious improvements and modifications thereto.
The features of the exemplary embodiments believed to be novel and the elements and/or the steps characteristic of the exemplary embodiments are set forth with particularity in the appended claims. The Figures are for illustration purposes only and are not drawn to scale. The exemplary embodiments, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
The present disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the disclosure are shown. This present disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this present disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but function. In the following description and in the claims, the terms “include/including” and “comprise/comprising” are used in an open-ended fashion, and thus should be interpreted as “including but not limited to”. “Substantial/substantially” means, within an acceptable error range, the person skilled in the art may solve the technical problem in a certain error range to achieve the basic technical effect.
The following description is of the best-contemplated mode of carrying out the disclosure. This description is made for the purpose of illustration of the general principles of the disclosure and should not be taken in a limiting sense. The scope of the disclosure is best determined by reference to the appended claims.
Moreover, the terms “include”, “contain”, and any variation thereof are intended to cover a non-exclusive inclusion. Therefore, a process, method, object, or device that includes a series of elements not only includes these elements, but also includes other elements not specified expressly, or may include inherent elements of the process, method, object, or device. If no more limitations are made, an element limited by “include a/an . . . ” does not exclude other same elements existing in the process, the method, the article, or the device which includes the element.
In this embodiment, the number of the securing parts 13 is two. The two securing parts 13 are assembled on the body 111 and are disposed at two sides of the connecting terminal port 113. The electrical connector 1 further comprises a circuit board 15 which is electrically connected with the connecting terminal port 113. The clamping parts 133 of the two securing members 13 clamps and secures the circuit board 15. Two clamping feet 1331 of the clamping part 133 abut against and are secured on an upper surface and a lower surface respectively. In this embodiment, the securing member 13 can be assembled according to the shape and structural configuration of the body 111 of the connector 11 through a component of the securing part 131 of the securing member 13 corresponding to two sides of the body 111 of the connector 11 to minimize the space that the securing member 13 occupies thereby to reduce the overall size of the electrical connector 1, which improves the structural designing and assembly process of the electrical connector 1.
The securing part 131 of the securing member 13 is attached to a side surface of the body 111 of the connector 11, and an upper side edge and a lower side edge of the securing part 131 extend in a direction toward an upper surface and a lower surface of the body 111. So that the securing part 131 could cover the side surface, the upper surface, and the lower surface of the body 111. The clamping part 133 of the securing member 13 comprises two clamping feet 1331 oppositely disposed. The two clamping feet 1331 of the clamping part 133 extend toward the opening of the connecting terminal port 113 from the upper side edge and the lower side edge of the securing part 131 respectively. The two clamping feet 1331 extendingly correspond to the upper and lower sides of the connecting terminal port, respectively.
Besides, in this embodiment, the securing member 13 can be disassembled from the connector 11. By pulling the securing member 13 away from the connector 11 with the pulling force greater than the friction force of the abutting block 1315 against the securing groove 115, the securing member 13 can be disassembled from the securing groove 115.
Besides, in this embodiment, same as the first embodiment, the securing member 13 can be disassembled from the connector 11. By pulling the securing member 13 away from the connector 11 with the pulling force greater than the friction force of the bump 1316 against the securing groove 115, the securing member 13 can be disassembled from the securing groove 115.
In this embodiment, when the securing bump 1311 enters the securing groove 115, the elastic member 1317 of the securing bump 1311 would be compressed by the inner sidewall of the securing groove 115 to be in a compressed state. Then the securing bump 1311 moves into the securing groove 115. When the elastic member 1317 of the securing bump 1311 moves to the through hole 1151 in the securing groove 115, the elastic member 1317 would be no longer compressed by the inner wall of the groove, then the elastic member 1317 is restored to the initial state as it is secured in the through hole 1151 of the securing groove 115. Finally, the securing bump 1311 is secured in the securing groove 115.
Besides, in this embodiment, the fixing member 13 can also be disassembled and detached from the connector 11. The through hole 1151 penetrates the securing groove 115. An orifice 1152 of the through hole 1151 is provided on the outside of the securing groove 115. That is, the orifice 1152 is connected to the inside of the securing groove 115. The orifice 1152 of the through hole 1151 at the outside of the securing groove 115 compresses the elastic member 1317. When the elastic member 1317 is compressed, it would no longer be secured in the through hole 1151 to be released from being secured in the through hole 1151. Thus, the securing bump 1311 of the securing member 13 can be detached from the securing groove 115.
In this embodiment, when securing bump 1311 enters the securing groove 115, the elastic bump 1318 of the securing bump 1311 would be compressed by the inner wall of the securing groove 115 to be in a compressed state. Then the securing bump 1311 moves into the securing groove 115. When the elastic bump 1318 of the securing bump 1311 moves to the opening 1153 in the securing groove 115, the elastic bump 1318 would be no longer compressed by the inner wall of the groove, then the elastic bump 1318 is restored to the initial state as it is secured in the opening 1153 of the securing groove 115. Finally, the securing bump 1311 is secured in the securing groove 115.
Besides, in this embodiment, the fixing member 13 can also be disassembled and detached from the connector 11. The opening 1153 penetrates the securing groove 115. An orifice 1154 of the opening 1153 is provided on the outside of the securing groove 115. That is, the orifice 1154 is connected to the inside of the securing groove 115. The orifice 1154 of the opening 1153 at the outside of the securing groove 115 compresses the elastic bump 1318. When the elastic bump 1318 is compressed, it would no longer be secured in the opening 1153 to be released from being secured in the opening 1153. Thus, the securing bump 1311 of the securing member 13 can be detached from the securing groove 115.
The clamping part 133 of the securing member 13 clamps and secures the circuit board 15 in the foregoing embodiments. The clamping part 133 and the circuit board 15 can be further secured by riveting, soldering, or screwing. In this way, the securing between the clamping part 133 and the circuit board 15 can be strengthened.
This embodiment provides an electrical connector assembly 2 comprising an electrical connector 1 and a mating circuit board 21. The electrical connector 1 further comprises a connecting port 112 disposed at one side of the body 111 away from the connecting terminal port 113. The mating circuit board 21 is plugged in the connecting port 112. The electrical connector assembly 2 further comprises a guiding member 23. The guiding member 23 is assembled on the body 111 and is disposed on the periphery of the connecting port 112. The mating circuit board 21 is disposed at the connecting port 112 along the guiding member 23. The guiding member 23 is provided with a smooth curved surface. Thus, through the guiding member 23, the mating circuit board 21 can be easily inserted into the connecting port 112 of the electrical connector 1.
In summary, embodiments of the present disclosure provide an electrical connector and an electrical connector assembly. The securing member can be assembled according to the shape and structural configuration of the body of the connector through a component of the securing part of the securing member corresponding to two sides of the body of the connector to minimize the space that the securing member occupies thereby to reduce the overall size of the electrical connector, which improves the structural designing and assembly process of the electrical connector.
It is to be understood that the term “comprises”, “comprising”, or any other variants thereof, is intended to encompass a non-exclusive inclusion, such that a process, method, article, or device of a series of elements not only comprise those elements but further comprises other elements that are not explicitly listed, or elements that are inherent to such a process, method, article, or device. An element defined by the phrase “comprising a . . . ” does not exclude the presence of the same element in the process, method, article, or device that comprises the element.
Although the present disclosure has been explained in relation to its preferred embodiment, it does not intend to limit the present disclosure. It will be apparent to those skilled in the art having regard to this present disclosure that other modifications of the exemplary embodiments beyond those embodiments specifically described here may be made without departing from the spirit of the disclosure. Accordingly, such modifications are considered within the scope of the disclosure as limited solely by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202011011148.7 | Sep 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5228870 | Gorenc | Jul 1993 | A |
5575663 | Broschard, III | Nov 1996 | A |
5893764 | Long | Apr 1999 | A |
6341988 | Zhu | Jan 2002 | B1 |
6767235 | Wu | Jul 2004 | B2 |
7112072 | Korsunsky | Sep 2006 | B2 |
8123534 | Herring | Feb 2012 | B1 |
20020004337 | Chiang | Jan 2002 | A1 |
20050026473 | Shiu | Feb 2005 | A1 |
20200274269 | Teh | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
209860183 | Dec 2019 | CN |
111244686 | Jun 2020 | CN |
570367 | Jan 2004 | TW |
WO-2017189363 | Nov 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20220094086 A1 | Mar 2022 | US |