This application claims the benefit of the filing date under 35 U.S.C. ยง119(a)-(d) of Taiwan Patent Application No. 103126184, filed Jul. 31, 2014.
1. Field of the Invention
The present invention relates to a terminal, an electrical connector and a manufacturing method thereof, and more particularly, to an electrical connector and a manufacturing method thereof which have a high assembly yield rate.
2. Description of the Related Art
Currently, an USB 2.0 electrical connector, which is a common product in the market, has four terminals arranged in a row. Since a width of the USB 2.0 electrical connector is approximately close to the width of a finger, and each of the terminal has a specific width and a specific structural strength, the terminal, when is installed into the insulative base, may be easily pushed into the insulative base by an operator to complete the installation, and thereafter the operator can determine whether the terminal has been properly installing on the insulative base only by visual determination.
With the advance of technology, the size of an electrical connector becomes smaller, and the number of the terminals increases as the transmission standard is improved. Taking an USB C-type electrical connector as an example of a new electrical connector standard, we can find that its entire size is smaller than that of an USB 2.0 connector, and each USB C-type electrical connector has two rows of terminals in which each row has 12 terminals. In other words, this kind of connector is with a smaller space of the insulative base but it requires installing a larger number of terminals within the space. Furthermore, since the insulative base of the electrical connector has holes corresponding to the terminals, the increase of the number of the terminals, the decrease the structural strength of the insulative base becomes. Moreover, since the width of the USB 2.0 electrical connectors becomes narrower, the structural strength of the insulative base becomes weaker. For such electrical connectors, the terminal may skewed when being installed into the insulative base while various pushing forces is applied by different operators to thus cause the terminals not being able to be correctly installed into the insulative base. Moreover, because the width of the terminal is too small and the number of the terminal is quite large, it is difficult for the operator to visually determine whether the terminals are correctly installed into the insulative base. Therefore, the installation for such connectors usually has a higher defective rate.
The present invention provides an electrical connector having the above terminals.
The present invention provides a manufacturing method of the electrical connector, by which the terminal is not easily to become skewed when being installed into the insulative base.
In the present invention, the electrical connector comprises a casing, an insulative base and at least one first terminal. The casing has an inner space and an opening communicated with the inner space. The insulative base is disposed in the inner space. The first terminal is disposed within the insulative base and includes a terminal body and an actuator. The terminal body includes a first contact portion, a first center portion and a first connecting portion which are sequentially connected. The first contact portion is adjacent to the opening for contacting a docking terminal, and the first connecting portion is used for connecting a printed circuit board. The actuator is protruded from the first center portion along a normal line of a contact area of the first contact portion and contacts the insulative base.
In one embodiment of the present invention, the insulative base includes a principle base and a tongue which protrudes from the principle base and extending along a longitudinal direction. The position of the tongue is more adjacent to the opening as compared with that of the principle base. The principle base includes at least one first groove extending along the longitudinal direction. The tongue includes at least one top cavity extending along the longitudinal direction and communicating with the at least one first groove. The at least one top cavity is exposed on the top surface of the tongue. The first contact portion is located within the top cavity of the tongue. The first center portion penetrates through the first groove.
In one embodiment of the present invention, the electrical connector further includes a plurality of second terminals and a plurality of third terminals. The principle base further includes a plurality of second grooves extending along a longitudinal direction, and the tongue includes a plurality of bottom cavities extending along a longitudinal direction and communicating with these second grooves. These bottom cavities are exposed on the bottom surface of the tongue. The plurality of second terminals and the plurality of third terminals penetrate these second grooves and are located within these bottom cavities.
In one embodiment of the present invention, each of the second terminals includes a second connecting portion, and each of the third terminals includes a third connecting portion. These second connecting portions and these third connecting portions are located in different planes.
In one embodiment of the present invention, the actuator includes an actuator face adjacent to the first connecting portion and a ramped portion adjacent to the first contact portion. The actuator face is perpendicular to a perimeter of the first center portion in contact with the actuator. The angle between the ramped portion and the perimeter is not a right angle, and the ramped portion faces toward the first contact portion and contacts the principle base.
In one embodiment of the present invention, the first center portion is provided with a retainer which is located on a section between the actuator and the first contact portion and extends in a direction perpendicular to the normal line. The retainer is engaged with the principle base.
A manufacturing method of electrical connector in the present invention comprises steps of providing an insulative base, wherein the insulative base includes at least one first groove; providing at least one first terminals, each of which includes a terminal body and an actuator protruded the terminal body; penetrating in advance a part of the terminal body into the at least one first groove, wherein a gap is existed between the actuator and the insulative base; and pushing the actuator until it contacts the insulative base.
In one embodiment of the present invention, the insulative base includes a principle base and a tongue protruded from the principle base and extending along a longitudinal direction. The principle base includes at least one first groove extending along the longitudinal direction. The tongue includes at least one top cavity extending along the longitudinal direction and communicating with the at least one first groove. The at least one top cavity is exposed on the top surface of the tongue.
In one embodiment of the present invention, the terminal body includes a first contact portion, a first center portion and a first connecting portion which are sequentially connected. The actuator protrudes from the first center portion in a direction along a normal line of a contact area of the first contact portion. In the step of penetrating in advance the partial portion of the terminal body into the at least one first groove, the first contact portion is disposed in the first groove.
In one embodiment of the present invention, when the actuator is contacted with the insulative base, the first contact portion is inserted into the top cavity, the first center portion penetrates through the first groove, and the actuator contacts the principle base of the insulative base.
In one embodiment of the present invention, the actuator includes an actuator face adjacent to the first connecting portion and a ramped portion adjacent to the first contact portion. The actuator face is perpendicular to a perimeter of the first center portion in contact with the actuator. The angle between the ramped portion and the perimeter is not a right angle, and the ramped portion faces toward the first contact portion.
In one embodiment of the present invention, the first center portion is provided with a retainer which is located on a section between the actuator and the first contact portion and extends in a direction perpendicular to the normal line. The retainer is engaged with the principle base when the actuator is contacted with the insulative base.
Based on the above, because of the protruded actuator being provided on the first center portion in the present invention, when the terminal is installed into the insulative base, it only requires the first contact portion of the terminal to be disposed in the first groove in advance such that the actuator may be pushed by an operator by using jigs or by hand to push the first contact portion into the top cavity to complete the assembling thereof. While the actuator is pushed by using jigs, the pushing force is constant, so the terminal is not easily skewed when being installed into the insulative base. Even when the actuator is pushed by hand, the existing of the actuator increases the contacting area between the fingers of operator and the terminal, thereby, increasing the probability of correctly installing the terminal into the insulative base.
To clarify the above features and advantages of the present invention, the follows describes several embodiments accompanied with drawings in detail.
The casing 110 has an inner space 112 and an opening 114 communicated with the inner space 112. The insulative base 120 is disposed in the inner space 112. In the embodiment, the insulative base 120, i.e. a plastic core, is made of insulating material, such as resins or polymer materials. However, the material of the insulative base 120 is not limited to this and may be any insulating materials.
As shown in
However, in other embodiments, the number of the first terminals 130, the second terminals 150 and the third terminals 160 is not limited to this, and the arrangement is not limited to get proximal to the opening of the casing 110. In an embodiment which is not shown, according to different types of the electrical connector 100, the electrical connector 100 may only have the first terminals 130. Alternatively, the electrical connector 100 may only have the first terminals 130 and the second terminals 150. At a position proximal to the opening of the casing 110, the first terminals 130 can be located on different plane. Alternatively, at a position proximal to the opening of the casing 110, the first terminals 130 and the second terminals 150 can be located on the same plane.
In the embodiment, a partial portion of the first terminals 130 is inserted into the first grooves 122 and the top cavities 127, and a partial portion of the second terminals 150 and a partial portion the third terminals 160 are respectively inserted into the second grooves 123 and the bottom cavities 128.
Specifically,
The first contact portions 132 and the first center portions 134 of the first terminals 130 are located on same plane, and a bending section is provided between the first center portion 134 and the first connecting portion 137 of each first terminal 130. The second contact portions 152 and the second center portions 154 of the second terminals 150 and the third center portions 164 and the third connecting portions 166 of the third electrical connectors 160 are located on another plane. Two bending sections are respectively provided between the second center portion 154 and the second connecting portion 156 of each second terminals 150 and between the third center portion 164 and the third connecting portion 166 of each third terminals 160, by being located on different location, and thus the second connecting portions 156 and the third connecting portions 166 are located on different vertical plane.
As shown in
In the embodiment, as an example, the first terminals 130 are installed by inserting the first terminals 130 into the insulative base 120, and the second terminals 150 and the third terminals 160 are fixed on the insulative base 120 by injection molding. When manufacturing the electrical connector 100 by injection molding, the second terminals 150 and the third terminals 160 are disposed on a specific position of a mold (not shown), and then plastic material is injected into a mold, and thereafter the second terminals 150 and the third terminals 160 are fixed on the insulative base 120 after the plastic material is cured. Therefore, although the space distance between the second terminals 150 and the third terminals 160 is small, the electrical connector can be successfully manufactured by this process. However, regarding the installation of the electrical connector, since an operator requires to have the first terminals 130 inserted into the insulative base 120 along the first grooves 122 and the top cavities 127, it is an issue with regard to how the first terminals 130 can be successfully and correctly inserted into the insulative base 120 if the width and height of the first terminals 130 being small and the number of the first terminals 130 being large are considered.
The below provides a design of a first terminal 130 in the embodiment by which the first terminal 130 can be easily and correctly installed via the structure of this first terminal 130.
In the embodiment, since the protruding actuator 140 is provided on the first center portion 134 of the first terminal, when the first terminal 130 is installed into the insulative base 120, it only requires the first contact portion 132 of the first terminal 130 to be disposed into the first grooves 122 in advance as shown in
While the actuators 140 of the first terminals 130 are pushed by using jigs, the pushing force is constant, so the first terminals 130 are not easily skewed when being installed into the insulative base 120. Even when the actuator 140 is installed into the insulative base 120 by hand, the existing of the actuator 140 increases the contacting area between the fingers of operator and the first terminals 130, thereby, increasing the probability of correctly installing the first terminals 130 into the insulative base 120.
It should be noted that, in the embodiment, all of the 12 first terminals are provided with the actuator 140. However, in other embodiments, it can optionally have only some ones of the first terminals 130 provided with the actuator 140 in consideration of the manufacturing process, by which this partial number of the first terminals 130 are installed into the insulative base 120 but the other first terminals 130 are manufactured by being injection molded on the insulative base 120. For example, when the first terminals 130 are installed into the insulative base 120, the first terminals 130 is not easily affected by dielectric constant of the insulative base 120 since the contacting area between the first terminals 130 and the insulative base 120 is small. Therefore, the terminals for transmitting high-frequency signal of the first terminals 130 may be installed into the insulative base 120, and the other first terminals 130 are manufactured by being injection molded on the insulative base 120.
Although the two different ways to dispose the first terminals 130 on the insulative base 120 are provided, the disposing manners are not limited to these. In addition, the types of terminal suitable for installing way of the first terminals 130 are not limited to the above. In addition, in other embodiments, the second terminals 150 and the third terminals 160 may be provided with the actuator 140, so as to be installed into the insulative base 120.
In this embodiment, as shown in
In addition, in the embodiment, the number of the first connecting areas 12 is set corresponding to the number of the first terminals 130, i.e. the number of the first connecting areas 12 is 12. The number of the second connecting areas 14 and the third connecting areas 16 are respectively larger than or equal to the number of the second terminals 150 and the third terminals 160. In the embodiment, the number of the second connecting areas 14 is 6, and the number of the third connecting areas 16 is 8. However, the total number of the second connecting areas 14 and the third connecting areas 16 are not limited to this.
Since the first connecting portions 137 of the first terminals 130 are connected with the printed circuit board 10 by being disposed in the same row to connect with the first connecting areas 12, the space distances between the first connecting areas shall be configured to be small for receiving the 12 first connecting areas 12 in the row. On the other hand, since the second connecting portions 156 of the second terminals 150 and the third connecting portions 166 of the third terminals 160 are disposed in different row and are respectively connected with the second connecting areas 14 and the third connecting areas 16 when the second connecting portions 156 and the third connecting portions 166 are connected with the printed circuit board 10, the space distances between the second connecting areas 14 and the space distances between the third connecting areas 16 are larger than the space distances between the first connecting areas 12. However, the numbers and the arrangement positions with respect to the first connecting areas 12, the second connecting areas 14 and the third connecting areas 16 may be changed according to the design of the electrical connector 100.
While in
Please refer back to
Moreover, the type of the electrical connector 100 is not limited to above-described embodiments. An electrical connector 200 is described below.
In the embodiment, through the disposition of the actuator 240, the pushing force, which is applied by using jigs and is used for pushing the actuator 240 of the terminals 230, is constant, so the terminals 230 are not easily skewed when being installed into the insulative base 220. Even when the actuator 240 is pushed by hand, the existing of the actuator 240 increases the contacting area between the fingers of operator and the terminals 230, thereby increasing the probability of correctly installing the terminals 230 into the insulative base 220.
Moreover, please refer back to
In the next steps a part of the terminal body is penetrated in advance into the at least one first groove, wherein a gap is existed between the actuator and the insulative base (Step 330); and pushing the actuator until it contacts the insulative base (Step 340) to complete the assembling of the first electrical connector.
In summary, by providing and actuator protruding from the first center portion, the present invention possesses merit that, when the terminal is installed into the insulative base, it only requires the first contact portion of the terminal to be disposed in the first groove in advance such that the actuator may be pushed by an operator by using jigs or by hand to push the first contact portion into the top cavity to complete the assembling thereof. While the actuator is pushed by using jigs, the pushing force is constant, so the terminal is not easily skewed when being installed into the insulative base. Even when the actuator is pushed by hand, the existing of the actuator increases the contacting area between the fingers of operator and the terminal, thereby, increasing the probability of correctly installing the terminal into the insulative base.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
103126184 A | Jul 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5766025 | Davis | Jun 1998 | A |
5836792 | Thumma | Nov 1998 | A |
20100112862 | Chiu | May 2010 | A1 |
20100255710 | Lin | Oct 2010 | A1 |
20120021651 | Ho | Jan 2012 | A1 |
20150340821 | Yen | Nov 2015 | A1 |
20160036175 | Yen | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160036175 A1 | Feb 2016 | US |