Electrical connector and method of assembling the same

Information

  • Patent Grant
  • 6764357
  • Patent Number
    6,764,357
  • Date Filed
    Thursday, September 12, 2002
    22 years ago
  • Date Issued
    Tuesday, July 20, 2004
    20 years ago
Abstract
A method of assembling an electrical connector (1) comprises the steps of: preparing a dielectric housing (2) defining a plurality of insertion slots therein; preparing a conductive contact strip (3a) comprising a plurality of contacts (3) and a carrier (3b) connecting with the contacts; preloading the contact strip into the housing; inserting a spacer (5) into the dielectric housing to position the contact strip, the spacer being inserted between an inner side surfaces (210) of the housing and mating portions (31) of the contacts; pulling the contact strip downwardly via a tool (4) gripping slots (35) defined in opposite sides of end portions (36) of the contacts; removing the spacer from the dielectric housing; severing the carrier and end portions of the contact strip; and bending mounting portions (34) of the contacts in an alternating manner.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an electrical connector and a method of assembling the same. A copending U.S. patent application Ser. No. 10/269,137 filed on Oct. 10, 2002, entitled “BOARD-TO-BOARD ELECTRICAL CONNECTOR AND METHOD FOR MANUFACTURING THE SAME”, and invented by Wei Hua Pan differently while with the same assignee as the instant application, discloses a related design.




2. Description of Related Art




Connectors generally have a large number of conductive contacts aligned in a dielectric housing thereof. Such connector must be designed to fulfill requirements of proper alignment, engagement and coplanarity of the contacts assembled in the housing. One way to assemble contacts of conventional connectors is to assemble the contacts from the top of the housing and pressed thereinto. However, achieving reliability of all the contacts assembled in the housing is difficult for connectors because the pressing force acting on the contacts is large and the contacts often change shape. Another way to retain the contacts in the housing is insert molding as disclosed in U.S. Pat. No. 6,102,748. The connector disclosed in U.S. Pat. No. 6,102,748 comprises a housing comprising a first housing member and a second housing member, two sets of contacts insert molded in opposite sides of the housing, and a shield covering the housing. The method of manufacturing the connector comprises the steps of: 1) insert molding a pair of contact carriers to opposite sides of the first housing member; 2) insert molding the first housing member having the two contact carriers to the second housing member; 3) severing carrier plates from the two contact carriers; and 4) assembling the shield to the housing. Such a method is reliable to retain the contacts in position. However, the manufacture cost is relatively high and the manufacture process is relatively complex.




Hence, an improved electrical connector is desired to overcome the disadvantages of the prior art.




SUMMARY OF THE INVENTION




Accordingly, an object of the present invention is to provide a contact strip for an electrical connector which can be easily and reliably assembled in a housing of the electrical connector.




Another object of the present invention is providing a method of assembling an electrical connector at a low cost and with high efficiency.




To achieve the above objects, a method of assembling an electrical connector in accordance with the present invention comprises the steps of: 1) preparing a dielectric housing defining a plurality of insertion slots therein; 2) preparing a conductive contact strip comprising a plurality of contacts and a carrier connecting with the contacts, each contact comprising a mating portion adapted for electrically contacting a mating contact of a complementary connector, a head portion extending upwardly from the mating portion for being received in a corresponding insertion slot, a retention portion having a plurality of barbs for being secured in the housing, a mounting portion extending downwardly from the retention portion adapted for soldering to a printed circuit board, and an end portion extending downwardly from the mounting portion and defining a pair of slots in opposite respective sides thereof; 3) preloading the contact strip into the dielectric housing until the barbs of the retention portions of the contacts engage inner inclined surfaces of the insertion slots, the mounting portions of the contacts extending beyond the bottom of the housing; 4) inserting a spacer into the dielectric housing to position the contact strip, the spacer being inserted between and engaging with an inner side surface of the housing and the mating portions of the contact strip, the head portions of the contacts being rotatable beyond the top of the insertion slots; 5) pulling the contact strip downwardly via a tool, the pair of slots defined in opposite sides of the mounting portion of each contact being gripped by the tool to downwardly pull the contact strip; 6) removing the spacer from the dielectric housing; 7) severing the carrier and the end portions of the contacts; and 8) bending the mounting portions of the contacts in an alternating manner so that the mounting portions align in two rows.




Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of an electrical connector in accordance with the present invention;





FIG. 2

is a perspective view of a dielectric housing of the electrical connector of

FIG. 1

;





FIG. 3

is a cross sectional view of the dielectric housing taken along line


3





3


of

FIG. 2

;





FIG. 4

is a perspective view of a conductive contact for the electrical connector of

FIG. 1

;





FIG. 5

is a side elevational view of a contact strip having a plurality of contacts for the electrical connector of

FIG. 1

;





FIG. 6

is a front elevational view of the contact strip having a plurality of contacts for the electrical connector of

FIG. 1

;





FIG. 7

is a cross sectional view illustrating the contact strip preloaded in the dielectric housing;





FIG. 8

is another cross sectional view illustrating the contact strip preloaded in the dielectric housing;





FIG. 9

is a cross sectional view illustrating a spacer inserted between an inner side surface of the housing and the contact strip;





FIG. 10

is a cross sectional view illustrating how the contacts being pulled by a tool;





FIG. 11

is a cross sectional view illustrating the contacts being fully inserted into the housing, with a carrier of the contact strip being removed; and





FIG. 12

is a cross sectional view of the electrical connector taken along line


12





12


of FIG.


1


.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIGS. 1-4

, an electrical connector


1


in accordance with the present invention comprises a dielectric housing


2


, and a plurality of conductive contacts


3


received in the housing


2


.




The dielectric housing


2


is a one-piece structure unitarily molded of dielectric material such as plastic or the like. The housing


2


is elongated and comprises a rectangular base


22


and an upstanding mating frame


21


. The mating frame


21


is of a known D-shaped configuration and defines a D-shaped cavity


24


for receiving a similarly shaped mating plug of a complementary connector (not shown). The mating frame


21


has a pair of laterally-spaced opposite inner side surfaces


210


and each inner side surface


210


defines a pair of swallow-tailed grooves


212


for engaging with corresponding portions of the complementary connector. A slant surface


211


is formed at an upper end of each inner side surface


210


for properly guiding the insertion of the complementary connector. A rectangular tongue


23


projects into the cavity


24


and defines two rows of insertion slots


230


on opposite respective sides thereof for receiving the contacts


3


therein. The insertion slots


230


are in communication with the cavity


24


defined in the mating frame


21


through a plurality of cutouts


232


and thus a plurality of ridges


231


is formed on opposite sides of the tongue


23


.




Referring to

FIGS. 5 and 6

, a contact strip


3




a


is stamped from a resilient metal sheet and includes a carrier


3




b


and a plurality of contacts


3


. Each contact


3


includes a retention portion


33


with a plurality of barbs


330


formed on opposite sides thereof for engaging with a corresponding insertion slot


230


of the tongue


23


. The contact


3


further includes a curved mating portion


31


for electrically contacting with a corresponding mating contact of the complementary connector, and a curved transition portion


32


connecting the mating portion


31


with the retention portion


33


. A T-shaped head portion


30


extends upwardly from an upper end of the mating portion


31


for engaging with two corresponding ridges


231


formed on the tongue


23


of the housing


2


. A mounting portion


34


extends downwardly from the retention portion


33


for solder connection to a printed circuit board (not shown). An end portion


36


extends downwardly from the mounting portion


34


. A pair of slots


35


is defined in opposite sides of the end portion


36


for being conveniently gripped by a tool


4


(shown in FIG.


10


). The carrier


3




b


integrally connects with upper ends of the T-shaped head portions


30


.




In assembly, a pair of contact strips


3




a


will be respectively inserted into the two rows of insertion slots


230


of the dielectric housing


2


using the same method. Therefore, only the assembly process of one contact strip


3




a


to the dielectric housing


2


will be described in detail herein. The method comprises the steps of:




1) Preloading the contact strip


3




a


into the housing


2


;




Referring to

FIGS. 7 and 8

, the contact strip


3




a


is top loaded into one row of slots


230


until the barbs


330


of the retention portions


33


of the contact strip


3




a


engage inner inclined surfaces


233


of the slots


230


. The mounting portions


34


extend beyond the bottom of the housing


2


.




2) Inserting a spacer


5


into the dielectric housing to position the contact strip;




Referring to

FIG. 9

, a spacer


5


is inserted between and engages with an inner side surface


210


of the mating frame


21


and the mating portions


31


of the contact strip


3




a


. Therefore, the T-shaped head portions


30


are rotatable beyond the top of the insertion slots


230


defined in the tongue


23


.




3) Pulling the contact strip


3




a


downwardly;




Referring to

FIG. 10

, the contact strip


3




a


is pulled downwardly by the tool


4


. The tool


4


is a substantially rectangular board, end a plurality of protrusi ns


41


is formed on side surface adjacent to an upper end thereof. The pair of slots


35


defined in the opposite sides of the end portion


36


of each contact


3


is gripped by corresponding two protrusions


41


of the tool


4


to downwardly pull the contact strip


3




a


. Thus, when a vertical force is applied to the tool


4


, the contact strip


3




a


will be pulled downwardly to a predetermined position where the T-shaped head portion


30


of each contact is in a position shown in FIG.


1


.




4) Removing the spacer


4


from the dielectric housing


2


;




Now referring to

FIG. 11

in conjunction with

FIG. 9

, the spacer


4


is removed from the dielectric housing


2


.




5) Severing the carrier


3




b


and optionally the end portions


36


of the contact strip


3




a;






Referring to

FIGS. 11 and 12

In conjunction with

FIG. 10

, the carrier


3




b


and the end portions


36


of the contacts


3


are severed from the contact strip


3




a


. Thus, the contacts


3


are individually separated.




6) Bending the mounting portions


34


of the contacts


3


.




Referring to

FIG. 12

, the mounting portions


34


of the contacts


3


are bent in an alternating manner so that the mounting portions


34


align in two rows.




Repeating the steps described above, the other contact strip


3




a


is assembled into the other row of insertion slots


23


of the electrical connector


1


easily and reliably. In the whole assembling process, a top-loading force applied to the contacts


3


is relatively small. The forces acting on the contact strip


3




a


, including the force pulling the contacts


3


downwardly, are minimized. Therefore, the shape of the contact


3


changes minimally. In addition, the tool


4


efficiently and conveniently helps assembling the contacts


3


into the electrical connector


1


and the manufacture cost of the electrical connector


1


is reduced compared with that of an electrical connector produced by insert molding.




It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.



Claims
  • 1. A contact strip stamped from sheet metal for use with an insulative housing of an electrical connector coupling to a complementary connector and mounted on a printed circuit board, comprising:a carrier; a plurality of juxtaposed contacts connected to the carrier, respectively, each of the contacts including a retention portion adapted to be secured to the housing, a tail portion located below the retention portion and adapted to be mounted to the printed circuit board, a mating portion located above the retention portion and adapted to be engaged with another terminals of said complementary connector, a head portion located above the mating portion and adapted to be engaged with the housing for preloading; the carrier connected to the head portions of the contacts, wherein said tail portion includes a gripping section configured to be adapted to be engaged with a tool for pulling the contact in an assembling direction during assembling the contact into the housing; wherein said gripping section is configured to be adapted to be optionally removed from the contact after assembled, without jeopardizing mounting function of the tail portion.
  • 2. A contact strip stamped from sheet metal for use with an insulative housing of an electrical connector coupling to a complementary connector and mounted on a printed circuit board, comprising:a carrier: a plurality of juxtaposed contacts connected to the carrier, respectively, each of the contacts including a retention portion adapted to be secured to the housing, a tail portion located below the retention portion and adapted to be mounted to the printed circuit board, a mating portion located above the retention portion and adapted to be engaged with another terminals of said complementary connector, a head portion located above the mating portion and adapted to be engaged with the housing for preloading; the carrier connected to the head portions of the contacts, wherein said tail portion includes a gripping section configured to be adapted to be engaged with a tool for pulling the contact in an assembling direction during assembling the contact into the housing; wherein said gripping section is coplanar with the corresponding tail portion.
US Referenced Citations (12)
Number Name Date Kind
3663931 Brown May 1972 A
3864014 Lynch Feb 1975 A
3963293 McKee Jun 1976 A
4089581 Schwindt May 1978 A
4166667 Griffin Sep 1979 A
4978307 Billman et al. Dec 1990 A
5175928 Grabbe Jan 1993 A
5609502 Thumma Mar 1997 A
5810623 Regnier et al. Sep 1998 A
5848920 Klein et al. Dec 1998 A
6102748 Lee et al. Aug 2000 A
6196886 Sato Mar 2001 B1