Information
-
Patent Grant
-
6764357
-
Patent Number
6,764,357
-
Date Filed
Thursday, September 12, 200222 years ago
-
Date Issued
Tuesday, July 20, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 884
- 439 885
- 439 637
- 439 736
-
International Classifications
-
Abstract
A method of assembling an electrical connector (1) comprises the steps of: preparing a dielectric housing (2) defining a plurality of insertion slots therein; preparing a conductive contact strip (3a) comprising a plurality of contacts (3) and a carrier (3b) connecting with the contacts; preloading the contact strip into the housing; inserting a spacer (5) into the dielectric housing to position the contact strip, the spacer being inserted between an inner side surfaces (210) of the housing and mating portions (31) of the contacts; pulling the contact strip downwardly via a tool (4) gripping slots (35) defined in opposite sides of end portions (36) of the contacts; removing the spacer from the dielectric housing; severing the carrier and end portions of the contact strip; and bending mounting portions (34) of the contacts in an alternating manner.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrical connector and a method of assembling the same. A copending U.S. patent application Ser. No. 10/269,137 filed on Oct. 10, 2002, entitled “BOARD-TO-BOARD ELECTRICAL CONNECTOR AND METHOD FOR MANUFACTURING THE SAME”, and invented by Wei Hua Pan differently while with the same assignee as the instant application, discloses a related design.
2. Description of Related Art
Connectors generally have a large number of conductive contacts aligned in a dielectric housing thereof. Such connector must be designed to fulfill requirements of proper alignment, engagement and coplanarity of the contacts assembled in the housing. One way to assemble contacts of conventional connectors is to assemble the contacts from the top of the housing and pressed thereinto. However, achieving reliability of all the contacts assembled in the housing is difficult for connectors because the pressing force acting on the contacts is large and the contacts often change shape. Another way to retain the contacts in the housing is insert molding as disclosed in U.S. Pat. No. 6,102,748. The connector disclosed in U.S. Pat. No. 6,102,748 comprises a housing comprising a first housing member and a second housing member, two sets of contacts insert molded in opposite sides of the housing, and a shield covering the housing. The method of manufacturing the connector comprises the steps of: 1) insert molding a pair of contact carriers to opposite sides of the first housing member; 2) insert molding the first housing member having the two contact carriers to the second housing member; 3) severing carrier plates from the two contact carriers; and 4) assembling the shield to the housing. Such a method is reliable to retain the contacts in position. However, the manufacture cost is relatively high and the manufacture process is relatively complex.
Hence, an improved electrical connector is desired to overcome the disadvantages of the prior art.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a contact strip for an electrical connector which can be easily and reliably assembled in a housing of the electrical connector.
Another object of the present invention is providing a method of assembling an electrical connector at a low cost and with high efficiency.
To achieve the above objects, a method of assembling an electrical connector in accordance with the present invention comprises the steps of: 1) preparing a dielectric housing defining a plurality of insertion slots therein; 2) preparing a conductive contact strip comprising a plurality of contacts and a carrier connecting with the contacts, each contact comprising a mating portion adapted for electrically contacting a mating contact of a complementary connector, a head portion extending upwardly from the mating portion for being received in a corresponding insertion slot, a retention portion having a plurality of barbs for being secured in the housing, a mounting portion extending downwardly from the retention portion adapted for soldering to a printed circuit board, and an end portion extending downwardly from the mounting portion and defining a pair of slots in opposite respective sides thereof; 3) preloading the contact strip into the dielectric housing until the barbs of the retention portions of the contacts engage inner inclined surfaces of the insertion slots, the mounting portions of the contacts extending beyond the bottom of the housing; 4) inserting a spacer into the dielectric housing to position the contact strip, the spacer being inserted between and engaging with an inner side surface of the housing and the mating portions of the contact strip, the head portions of the contacts being rotatable beyond the top of the insertion slots; 5) pulling the contact strip downwardly via a tool, the pair of slots defined in opposite sides of the mounting portion of each contact being gripped by the tool to downwardly pull the contact strip; 6) removing the spacer from the dielectric housing; 7) severing the carrier and the end portions of the contacts; and 8) bending the mounting portions of the contacts in an alternating manner so that the mounting portions align in two rows.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of an electrical connector in accordance with the present invention;
FIG. 2
is a perspective view of a dielectric housing of the electrical connector of
FIG. 1
;
FIG. 3
is a cross sectional view of the dielectric housing taken along line
3
—
3
of
FIG. 2
;
FIG. 4
is a perspective view of a conductive contact for the electrical connector of
FIG. 1
;
FIG. 5
is a side elevational view of a contact strip having a plurality of contacts for the electrical connector of
FIG. 1
;
FIG. 6
is a front elevational view of the contact strip having a plurality of contacts for the electrical connector of
FIG. 1
;
FIG. 7
is a cross sectional view illustrating the contact strip preloaded in the dielectric housing;
FIG. 8
is another cross sectional view illustrating the contact strip preloaded in the dielectric housing;
FIG. 9
is a cross sectional view illustrating a spacer inserted between an inner side surface of the housing and the contact strip;
FIG. 10
is a cross sectional view illustrating how the contacts being pulled by a tool;
FIG. 11
is a cross sectional view illustrating the contacts being fully inserted into the housing, with a carrier of the contact strip being removed; and
FIG. 12
is a cross sectional view of the electrical connector taken along line
12
—
12
of FIG.
1
.
DETAILED DESCRIPTION OF THE INVENTION
Referring to
FIGS. 1-4
, an electrical connector
1
in accordance with the present invention comprises a dielectric housing
2
, and a plurality of conductive contacts
3
received in the housing
2
.
The dielectric housing
2
is a one-piece structure unitarily molded of dielectric material such as plastic or the like. The housing
2
is elongated and comprises a rectangular base
22
and an upstanding mating frame
21
. The mating frame
21
is of a known D-shaped configuration and defines a D-shaped cavity
24
for receiving a similarly shaped mating plug of a complementary connector (not shown). The mating frame
21
has a pair of laterally-spaced opposite inner side surfaces
210
and each inner side surface
210
defines a pair of swallow-tailed grooves
212
for engaging with corresponding portions of the complementary connector. A slant surface
211
is formed at an upper end of each inner side surface
210
for properly guiding the insertion of the complementary connector. A rectangular tongue
23
projects into the cavity
24
and defines two rows of insertion slots
230
on opposite respective sides thereof for receiving the contacts
3
therein. The insertion slots
230
are in communication with the cavity
24
defined in the mating frame
21
through a plurality of cutouts
232
and thus a plurality of ridges
231
is formed on opposite sides of the tongue
23
.
Referring to
FIGS. 5 and 6
, a contact strip
3
a
is stamped from a resilient metal sheet and includes a carrier
3
b
and a plurality of contacts
3
. Each contact
3
includes a retention portion
33
with a plurality of barbs
330
formed on opposite sides thereof for engaging with a corresponding insertion slot
230
of the tongue
23
. The contact
3
further includes a curved mating portion
31
for electrically contacting with a corresponding mating contact of the complementary connector, and a curved transition portion
32
connecting the mating portion
31
with the retention portion
33
. A T-shaped head portion
30
extends upwardly from an upper end of the mating portion
31
for engaging with two corresponding ridges
231
formed on the tongue
23
of the housing
2
. A mounting portion
34
extends downwardly from the retention portion
33
for solder connection to a printed circuit board (not shown). An end portion
36
extends downwardly from the mounting portion
34
. A pair of slots
35
is defined in opposite sides of the end portion
36
for being conveniently gripped by a tool
4
(shown in FIG.
10
). The carrier
3
b
integrally connects with upper ends of the T-shaped head portions
30
.
In assembly, a pair of contact strips
3
a
will be respectively inserted into the two rows of insertion slots
230
of the dielectric housing
2
using the same method. Therefore, only the assembly process of one contact strip
3
a
to the dielectric housing
2
will be described in detail herein. The method comprises the steps of:
1) Preloading the contact strip
3
a
into the housing
2
;
Referring to
FIGS. 7 and 8
, the contact strip
3
a
is top loaded into one row of slots
230
until the barbs
330
of the retention portions
33
of the contact strip
3
a
engage inner inclined surfaces
233
of the slots
230
. The mounting portions
34
extend beyond the bottom of the housing
2
.
2) Inserting a spacer
5
into the dielectric housing to position the contact strip;
Referring to
FIG. 9
, a spacer
5
is inserted between and engages with an inner side surface
210
of the mating frame
21
and the mating portions
31
of the contact strip
3
a
. Therefore, the T-shaped head portions
30
are rotatable beyond the top of the insertion slots
230
defined in the tongue
23
.
3) Pulling the contact strip
3
a
downwardly;
Referring to
FIG. 10
, the contact strip
3
a
is pulled downwardly by the tool
4
. The tool
4
is a substantially rectangular board, end a plurality of protrusi ns
41
is formed on side surface adjacent to an upper end thereof. The pair of slots
35
defined in the opposite sides of the end portion
36
of each contact
3
is gripped by corresponding two protrusions
41
of the tool
4
to downwardly pull the contact strip
3
a
. Thus, when a vertical force is applied to the tool
4
, the contact strip
3
a
will be pulled downwardly to a predetermined position where the T-shaped head portion
30
of each contact is in a position shown in FIG.
1
.
4) Removing the spacer
4
from the dielectric housing
2
;
Now referring to
FIG. 11
in conjunction with
FIG. 9
, the spacer
4
is removed from the dielectric housing
2
.
5) Severing the carrier
3
b
and optionally the end portions
36
of the contact strip
3
a;
Referring to
FIGS. 11 and 12
In conjunction with
FIG. 10
, the carrier
3
b
and the end portions
36
of the contacts
3
are severed from the contact strip
3
a
. Thus, the contacts
3
are individually separated.
6) Bending the mounting portions
34
of the contacts
3
.
Referring to
FIG. 12
, the mounting portions
34
of the contacts
3
are bent in an alternating manner so that the mounting portions
34
align in two rows.
Repeating the steps described above, the other contact strip
3
a
is assembled into the other row of insertion slots
23
of the electrical connector
1
easily and reliably. In the whole assembling process, a top-loading force applied to the contacts
3
is relatively small. The forces acting on the contact strip
3
a
, including the force pulling the contacts
3
downwardly, are minimized. Therefore, the shape of the contact
3
changes minimally. In addition, the tool
4
efficiently and conveniently helps assembling the contacts
3
into the electrical connector
1
and the manufacture cost of the electrical connector
1
is reduced compared with that of an electrical connector produced by insert molding.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Claims
- 1. A contact strip stamped from sheet metal for use with an insulative housing of an electrical connector coupling to a complementary connector and mounted on a printed circuit board, comprising:a carrier; a plurality of juxtaposed contacts connected to the carrier, respectively, each of the contacts including a retention portion adapted to be secured to the housing, a tail portion located below the retention portion and adapted to be mounted to the printed circuit board, a mating portion located above the retention portion and adapted to be engaged with another terminals of said complementary connector, a head portion located above the mating portion and adapted to be engaged with the housing for preloading; the carrier connected to the head portions of the contacts, wherein said tail portion includes a gripping section configured to be adapted to be engaged with a tool for pulling the contact in an assembling direction during assembling the contact into the housing; wherein said gripping section is configured to be adapted to be optionally removed from the contact after assembled, without jeopardizing mounting function of the tail portion.
- 2. A contact strip stamped from sheet metal for use with an insulative housing of an electrical connector coupling to a complementary connector and mounted on a printed circuit board, comprising:a carrier: a plurality of juxtaposed contacts connected to the carrier, respectively, each of the contacts including a retention portion adapted to be secured to the housing, a tail portion located below the retention portion and adapted to be mounted to the printed circuit board, a mating portion located above the retention portion and adapted to be engaged with another terminals of said complementary connector, a head portion located above the mating portion and adapted to be engaged with the housing for preloading; the carrier connected to the head portions of the contacts, wherein said tail portion includes a gripping section configured to be adapted to be engaged with a tool for pulling the contact in an assembling direction during assembling the contact into the housing; wherein said gripping section is coplanar with the corresponding tail portion.
US Referenced Citations (12)