CROSS-REFERENCE TO RELATED APPLICATION
This application is related to U.S. patent application Ser. No. 11/646,838 filed on Dec. 27, 2006, invented by a same inventor, Peter Kuo, entitled “ELECTRICAL CONNECTOR ASSEMBLY HAVING IMPROVED LOCKING MEMBER”, which is assigned to a same assignee as this application.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to an electrical connector assembly, and more particularly to an electrical connector assembly for transmitting signals in an interconnection system.
2. Description of Related Arts
With the development of communication and computer technology, many electrical connectors with conductive elements are desired to construct a large number of signal transmitting paths between two electrical devices. Such electrical connectors are widely used in connecting systems of electrical devices and the like devices requiring data processing and communication.
For example, U.S. Pat. No. 6,171,136B1 which issued to Northstar Farest on Jan. 9, 2001 shows a male type USB (Universal Serial Bus) connector comprising a connector body, a cable connected to the connector body, two symmetrical insulating shells fastened together and covered on the lateral side walls and rear side wall of the connector body and a part of the cable to secure the cable to the connector body, an insulating cap fastened to front portions of the connector body and the insulating shells, and two packing strips mounted between the backward coupling flange of the cap and the top, bottom side walls of the connector body.
However, said electrical connector in use needs to plug into or unplug from the complementary connector frequently, thereby causing two packing strips easy to escape from said electrical connector. In addition, in a vibrative circumstance, two packing strips are easy to loose and cannot inferentially mount said insulating cap with the connector body. Thus, a reliable connection between said electrical connector and the complementary connector is affected.
Hence, an electrical connector assembly having improved cover is desired.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide an electrical connector assembly having improved cover, thereby, assuring a reliable connection.
To achieve the above objects, an electrical connector assembly comprises a cover including a pair of ribs formed at inner thereof, and a pair of retaining slots between the ribs and corresponding lateral walls thereof, each retaining slot defining a hollow at a root region thereof, a connector housing received in the cover, and including a mating port, and a connecting port, a plurality of contacts, each contact including a mating end received in the mating port, and a tail end rearwardly extending beyond the connecting port, a cable, electrically terminated to said tail ends of the contacts, and an insulative cap, including a generally rectangular base section with a central opening for allowing said mating port to extend through, and a pair of locking barbs rearwardly from the base section; wherein tips of the locking barbs are respectively retained within said hollows of retaining slots for holding the insulative cap and the cover together.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a perspective, assembled view of an electrical connector assembly in accordance with the present invention;
FIG. 2 is a perspective, exploded view of the electrical connector assembly shown in FIG. 1;
FIG. 3 is a view similar to FIG. 2, but taken from a different aspect;
FIG. 4 is a perspective, assembled view of a connector body of the electrical connector assembly;
FIG. 5 is a partially, assembled view of the electrical connector assembly shown in FIG. 2; and
FIG. 6 is a cross-sectional view of the electrical connector assembly of FIG. 1 taken along line 6-6 of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIGS. 1-3, an electrical connector assembly 1 in accordance with the present invention comprises a cover 6, a connector body 20 received in the cover 6, a printed circuit board 4 connected to the connector body 20, a cable 7 soldered to the printed circuit board 4, a shielding shell 5 enclosing a rear portion of the connector body 20 and a front portion of the cable 7, and an insulative cap 10 engaged with the cover 6 from a front side.
Referring to FIG. 1-6, the connector body 20 with a generally T-shape configuration, includes a connector housing 21, a plurality of contacts 3 received in the connector housing 21, and a metal shell 22 enclosing the connector housing 21 for providing a protection against EMI (Electro Magnetic interference). The connector housing 21 includes a generally rectangular main portion 23, and a tongue portion 24 forwardly extending from a front surface of the main portion 23. A plurality of contact passageways (not labeled, shown in FIG. 6) extends through the main portion 23 and the tongue portion 24 so as to receive said contacts 3 therein. Wherein, each contact 3 comprises a mating end 30 retained in the contact passageways, for mating with a corresponding connector, and a tail end 31 opposite to the mating end 30 and extending beyond a rear surface of the main portion 23. The metal shell 22 includes a rectangular frame section 220, and a tongue section 221, for respectively enclosing said main portion 23 and tongue portion 24. In a preferred embodiment, a protruding 230 formed at the main portion 23, and an opening 223 defined in the frame section 220, lock with each other for providing a reliable connection therebetween. Further, the frame section 220 includes a plurality of positing pieces 222 respectively and rearwardly extending from a rear edge thereof and being parallel to tail ends 31 of the contacts 3.
Referring to FIGS. 3-4, the printed circuit board 4 is of a generally rectangular configuration, and includes a plurality of through holes (not shown) for receiving and soldering with said tail ends 31, and a plurality of apertures 40 disposed at four edges for fittingly holding said positing pieces 222. It is noted that the printed circuit board 4 defines a mating plane, which is perpendicular to a front-to-rear direction, and the tail ends 31 of contacts 3 are inserted into the through holes and facing to said mating plane.
Referring to FIGS. 2-3, the shielding shell 5 is consisted of an upper shell 50, and a lower shell 59 that are all stamped from a piece of metal or other conductive materials. The upper shell 50 includes an upper wall 51, and a pair of lateral walls 52 downwardly extending from the upper wall 51. The upper wall 51 forms a T-shape piece 53 forwardly extending from a front edge thereof. The lower shell 59 with a similar shape as the upper shell 50, includes a lower wall 58, a pair of lateral walls 57 upwardly extending from the lower wall 58, and a cable clamp 55 rearwardly extending from a rear edge of the lower wall 58 for clamping a grounding layer (not shown) of the cable 7 and providing a grounding performance. In addition, each lateral wall 57 forms a T-shape piece 56. Referring to FIG. 6, the upper and lower shells 50, 59, respectively from top and bottom sides, enclose a rear portion of the connector body 20, and reliably lock with the printed circuit board 4 by an engagement between the T-shape pieces 56 and the apertures 40 formed at two lateral edges of the printed circuit board 4. Noticeably, the two lateral walls 52 of the upper shell 50 are located at inner sides of the lateral walls 57 of the lower shell 59.
Referring to FIG. 2, the cable 7 includes a plurality of conductors 70 for soldering with the tail ends 31 of the contacts 3, and the grounding layer (not shown) surrounding the conductors 70, an insulative jacket (not shown) surrounding the grounding layer for providing protection, and a stress relief 71 integrally molded with the insulative jacket. The stress relief 71 forms a pair of locking block 72 laterally extending therefrom.
Referring to FIGS. 2-3 in conjunction with FIG. 6, the cover 6 comprises an upper cover half 60, and a lower cover half 61 that is similar to the upper cover half 60 in shape. These two cover halves 60, 61 together define a receiving space (not labeled) for receiving said connector body 20, said shielding shell 5, said printed circuit board 40 and a front portion of the cable 7. In a preferred embodiment, these two cover halves 60, 61 are molded together by ultrasonic welding process, after corresponding elements are received in said receiving space. In addition, in another preferred embodiment, the cover 6 is unitarily molded on the corresponding elements, which is named after “one-piece” configuration, and needlessly shaped as “two-piece” as illustrated in FIG. 2. No matter what the cover 6 is of “one-piece”, or “two piece” configuration, a pair of reversed L-shape ribs 65, 66 are respectively formed at positions adjacent to front edges of the lateral walls of the cover 6, and thereby defining a pair of retaining slots 63, 64. In two-piece configuration, the retaining slots 63 in said upper cover half 60, associated with the retaining slots 64 in said lower cover half 61, together define a pair of retaining slots similarly as that of one-piece configuration. Each reversed L-shape rib 65, 66 forms a flange 650, 660 that all extends beyond a front edge of the cover 6.
Referring to FIGS. 2-3, the insulative cap 10 is of a rectangular frame shape, and includes a lengthwise base section 11, and a pair of locking barbs 13 rearwardly and perpendicularly extending from two lateral sides of rear edges of the base section 11. The base section 11 defines a generally rectangular opening 12 at middle thereof from a front view, through which the tongue portion 24 extends, a receiving room 15 stepped relative to the rectangular opening 12, and a pair of inserting slot 14 communicated with the receiving room 15 and defined at two lateral sides of receiving room 15. Noticeably, in this preferred embodiment, a mating interface of the insulative cap 10 is of a depressed arc shape for fittingly cooperating with another mating interface of a complementary connector. According to shapes of the complementary connectors, the insulative cap 10 may be chosen with a corresponding shape.
Referring to FIGS. 1-6, in assembly, in one-piece cover 6 manner, after the connector body 20, the printed circuit board 4, the shielding shell 5, and the cable 7 are assembled together, the unitary cover 6 is molded on said elements, with a pair of retaining slots 63, 64 formed adjacent to front edges thereof. In two-piece cover 6 manner, after assembly of said elements, the upper and lower cover halves 60, 61 enclose said elements, and unitarily mold with each other by ultrasonic welding process. Lastly, the insulative cap 10 is assembled to the cover 6 from a front side, until a front of the main portion 23 is received in the receiving room 15, and the pair of flanges 650, 660 are restrictively held in the inserting slots 14 for preventing the insulative cap 10 from shaking upwardly or downwardly, with the tongue portion 24 extending through the opening 12. During this assembly process, the locking barbs 13 are respectively inserted into and locked with the retaining slots 63, 64 for holding the insulative cap 10 reliably with the cover 6. As illustrated in FIG. 6, tips of the locking barbs 13 are respectively retained within a pair of hollows of retaining slots 63, 64 for holding the insulative cap 10 and the cover 6 together.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.