1. Field of the Invention
The present invention relates to an electrical connector assembly, and more particularly to an electrical connector assembly for interconnecting an electronic module such as a camera module for use with a cellular phone or the like to an electrical member such as a printed circuit board via a flexible printed circuit board. At least a protecting section is formed on the flexible printed circuit board to prevent pads formed on the printed circuit board from being scraped accidentally.
2. Description of the Related Art
Conventionally, electronic modules such as a camera module for use with a cellular phone has to be securely maintained in electrical connection with an electronic member such as a printed circuit board. Therefore, a camera socket is dimensioned to securely receive a camera module therein. Consequently, the camera module is electrically connected with the printed circuit board via the shielded connector.
In order to comply with a miniaturization trend of electrical connectors, a flexible printed circuit board is used in said electrical connector to reduce the height of the electrical connector and provide a reliable electric path between a camera module and a printed circuit board.
U.S. Pub No. 2007/0238357, published on Oct. 11, 2007, discloses an electrical connector assembly for interconnecting a camera module and a printed circuit board via a flexible printed circuit board. Said electrical connector assembly includes a shielded shell, a flexible printed circuit board received in the shielded shell and a supporting member sandwiched between the shielded shell and the printed circuit board. The shielded shell has a receiving space and defines two pairs of sidewalls extending upwardly. Each of an opposite sidewalls defines a resilient portion projecting towards the receiving space for retaining the camera module. The flexible printed circuit board is received in the receiving space also for electrically connecting the camera module. The supporting element upholds the flexible printed circuit board. When the camera module is assembled in the receiving space from above, the flexible printed circuit board is sandwiched between the camera module and supporting element, meanwhile, the pads formed on upper surface of the flexible printed circuit board contact with the pads formed on the bottom face of the camera module so as to transfer the signal of the camera module to printed circuit board.
It is well know that flexible printed circuit board is made of soft material and is easy to bend and distort, accordingly, the flexible printed circuit board, especially the pads formed thereon to electrically connect with the pads formed on the bottom of the camera module, is easy to be scraped during production, assembly and so on. Accordingly, when camera module is assembled in the receiving space of the shielded shell, there has a possible that the pads formed on the flexible printed circuit board will not contact with the pads formed on the bottom of the camera module due to the damage or deformation. As a result, a reliable electrical path between the camera module and printed circuit board is not provided.
Thus, there is a need to provide an improved electrical connector assembly to overcome the above-mentioned problems.
It is an object of the present invention to provide an electrical connector assembly having a protecting section on the flexible circuit board so as to prevent pads formed on the flexible printed circuit board from being scraped and provides a reliable electric path between two electrical elements.
In order to achieve the objective above, an electrical connector assembly in accordance with a first embodiment of the present invention includes a shielded shell, a spring plate and a flexible printed circuit board. The shielded shell includes a base wall and four sidewalls corporately defining a receiving space upwardly. The spring plate disposes on upper surface of the base wall of the shielded shell. The flexible printed circuit board includes a first part received in the receiving space and a second part extending out of shielded shell. Wherein, the first part defines a plurality of conductive pads extending from opposite side edges of the first part in order to contact with pads formed on the bottom of the camera module. A protecting section is integrally formed with the first part and disposes on the periphery of the conductive pads and disconnect therewith.
In accordance with a second embodiment of the present invention, an electrical connector assembly comprises a shielded shell, a spring plate and a flexible printed circuit board. The shielded shell includes a base wall and fours sidewalls corporately defining a receiving space upwardly. The spring plate disposed on upper surface of the base wall of the shielded shell and includes a plurality of contact engaging portion disposed above the base wall. The flexible printed circuit board includes a first part received in the receiving space and a second part extending beyond the receiving space. Wherein, the first part includes a first board section and a plurality of conductive pads extending from the opposite side edges of the first board section. Four edge portions are integrally formed with first board portion between which the conductive pads disposed. A protecting section is formed on upper surface of the first part and includes a second board section and two pair of wings. Wherein, the second board section and the four wings is configures an H-shape. The second board section is abutting against the upper surface of the first board section; while each wing is abutting against each edge portion thereof, thereby the conductive pads are protected by the protecting section and prevent the conductive pads from being scraped during the production, assembly and the like.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with its objects and the advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like members in the figures and in which:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention.
A shielded connector assembly according to the present invention is applicable to an electronic apparatus such as digital cameras, PDAs (Personal Digital Assistants), PCs (Personal Computers), mobile phones or the like. In the first embodiment illustrated in
The shielded shell 10 is made of metal material and configured by front wall 103, back wall 105, left wall 107, right wall 109 and a base wall 101 cooperatively defining a receiving space 100. Each front wall 103, back wall 105, left wall 107 and right wall 109 extends upwardly from the peripheral of the base wall 101 and the adjacent walls of the said walls did not connect each other so as to improve the elastic property of the shielded shell 10 and retain the camera module 50 steadily.
Each of the front and back wall 103, 105 defines a locking finger 1031, 1051 extending from the inner surface thereof to the opposite walls for holding the camera module 50 and the end of the locking finger 1031, 1051 smoothly curved inwardly in order to prevent the camera module 50 from being scraped. Further more, the back wall 105 defines a window 1050 passing through the top thereof to the down so as to provide a path for the flexible printed circuit board 70 passing through.
The left and right wall 107, 109 has the same structure, each including a fixed section (not shown) and an elastic section 1070. The fixed section connects to the base wall 100 and the elastic section 1073 extends upwardly from the middle portion of the up edge of the fixed section 1071 and comprises a board portion (not shown) connected to the fixed section and a pair of retaining portions 1072 extending from the two side ends of the board portion to an opposite wall. Each of the retaining portions 1072 defines a holding portion 1076 vertical to the base wall 100 of the shielded shell 10 so as to abut against the peripheral of the camera module 50. A slant portion 1078 is formed on the top end of the holding portion 1076 and formed an angle with the holding portion 1076 to lead the inserting of the camera module 50. And a connection portion 1074 is formed between the board portion and the retaining portion 1072. Further more correspond to the slant portion 1078 of the left and right wall 107, 109, each of the front and back wall 103, 105 defines a leading portion 1032, 1052 on the end thereof to guide the mounting of the camera module 50.
A plurality of grooves 1010 are formed on the base wall 101 and disposes on a region which is adjacent to the left and right wall 107, 109. A first hole 1012 is formed on the base wall 101 and disposed between the two rows of the grooves 1010.
The spring plate 30 is made of metal material and disposed on upper surface of the base wall 101 of the shielded shell 10. The spring plate 30 comprises a main board 300 and a plurality of contact engaging portions 302 extending from the two opposite side edges of the main board 300 and away therefrom. A pair of second holes 310 is formed on the main board 300 corresponding with the first holes 1012. A dimple 308 is formed on the main board 300 and adjacent to each second hole 310. Moreover, the main board 300 further defines a first and second retaining portion 304, 306, separating extending from the two ends of the main board 300 along the connecting line of the dimples 308. Wherein, the first retaining portion 304 has a same height with the main board 300, while the second retaining portion 306 extending downwardly from the end of the main board 300. Accordingly, the shielded shell 10 defines a slot 1013 corresponding with the first retaining portion 304 of the spring plate 30; the base wall 101 of the shielded shell 10 defines a pair of arm 1016, farther extending forwardly from the edge of the base wall 101 and opposite to the slot 1013. A gap 1014 is formed between the arms 1016 so as to receive the second retaining portion 306 of the spring plate 30.
Please especially referring to the
Additionally, the first section 701 has an equivalent dimension with the receiving space 100 of the shielded shell 10 and the width of the second section 700 is smaller than that of first section 701 and equal to the width of the window 1050 of the shielded shell 10 so as to prevent the flexible printed circuit board 70 from being pushed out from the receiving space 100.
A protecting element 702 disposes on upper surface of the first section 701 of the flexible printed circuit board 70, comprising a second plate portion 702 and two pair of wings 714. The second plate portion 702 abut against the upper surface of the first plate portion 704 of the first section 701 of the flexible printed circuit board 70, while each wing 714 abutting against each edge portion 703 of the first plate portion 704. The material rigidity of the protecting element 702 is higher than that of the flexible printed circuit board 70, therefore the protecting element 702 can prevent the conductive pads 708 of the flexible printed circuit board 70 from being scraped during production, assembling and the like.
The camera module 50 comprises a base portion 54 which configured as a rectangular, a column portion 56 disposed on a top surface of the base portion 31, and a bottom portion 52 a top surface of which contacts with a bottom surface of the base portion 54. A strip 37 is formed on one side surface of the base portion 54 and extends to the peripheral of the column portion 56 so as to prevent the camera module 50 mismatchable assembling into the receiving space 100 of the shielded shell 10.
A pair of sticks 9 is provided for holding the spring plate 30 on the shielded shell 10. After the shielded shell 10 and the spring plate 30 are combined together, the sticks 9 are removed.
When assembly, firstly, the sticks 9 pass through the first holes 1012 of the shielded shell 10; secondly, the spring plate 30 is assembled on the base wall 101 of the shielded shell 10 and the sticks 9 further pass through the second holes 310 of the spring plate 30, thereby the spring plate 30 is located on the shielded shell 10, meanwhile the main board 300 of the spring plate 30 abutting against an upper face of the base wall 101 of the shielded shell 10, the first retaining portion 304 received in the slot 1013, the second retaining portion 306 received in the gap 1014 and sandwiched brtween the arms 1016. Thirdly, the shielded shell 10 and spring plate 30 are further connected via spot welding. Finally, the flexible printed circuit board 70 and the camera module 50 is inserted into the receiving space 100 of the shielded shell 10. Wherein, the flexible printed circuit board 70 is sandwiched between the spring plate 30 and the camera module 50. Top face of each conductive pad 708 of the flexible printed circuit board 70 contacts with corresponding pad formed on the bottom surface of the bottom portion 52 of the camera module 50 and bottom face of each conductive pad 708 thereof contacts with corresponding contact engaging portion 302 of the spring plate 30. During the process of the moving of the camera module 50, the contact engaging portion 302 of spring plate 30 does not deform till the bottom portion 52 of the camera module 50 is abut against with the dimple 308 of the spring plate 30. At this moment, the camera module 50 is completely fitted into the shielded shell 10 and the flexible printed circuit board 70 is sandwiched between the spring plate 30 and the camera module 50 firmly, meanwhile, the signal of the camera module 50 is transferred to the printed circuit board (not shown) via the flexible printed circuit board 70.
Please refer to the
In the above description of the preferred embodiment, the flexible printed circuit board defines a protecting portion. In the first embodiment, the protecting portion is integrally formed with the plate portion of the flexible printed circuit board 70 and encloses the conductive pads thereof. In the second embodiment, the protecting portion disposes on the first plate portion and comprises a second plate portion and two pair of wings, wherein each wing abutting against each edge portion. Moreover, the material rigidity of the protecting portion is higher than that of flexible printed circuit board. As a result, the protecting portion can prevent the conductive pads from being scraped during production, assembly and the like.
It is to be understood, however, that even though numerous, characteristics and advantages of the present invention have been set fourth in the foregoing description, together with details of the structure and function of the invention, the disclosed is illustrative only, and changes may be made in detail, especially in matters of number, shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200720035991.2 | Apr 2007 | CN | national |
200720039788.2 | Jun 2007 | CN | national |