1. Field of the Invention
The present invention relates to an electrical connector assembly, and more particular to an electrical connector assembly with enhanced blind mating features.
2. Description of the Related Art
TaiWan Pat. No. 531073 issued on May 1, 2003 discloses an electrical connector assembly comprises a first connector and a second connector. The first connector includes an insulative housing having a mating tongue with a plurality of contacts disposed thereon. A pair of guiding posts are formed at opposite ends of the mating tongue. The second connector includes an insulative base defining a mating cavity therein. A plurality of contacts are retained in the insulative base with contacting portions disposed in the mating cavity. The insulative base also defines a pair of guiding apertures at opposite end walls for receiving guiding posts of the first connector. However, as the guiding posts need to be in alignment with guiding apertures during the mating process, it is not very easy for the first connector mating with the second connector. Hence, an electrical connector assembly which can solve the problem is needed.
Accordingly, an object of the present invention is to provide an electrical connector assembly with enhanced blind mating features.
In order to achieve the object set forth, an electrical connector assembly comprises a first connector unit and a second connector. The first connector unit comprises a first connector having an insulative housing with a plurality of contacts mounted thereon. A printed circuit board, on which the first connector is seated, defines a pair of mounting sections at opposite ends thereof and locate adjacent to the first connector. An insulative cover is attached to a first surface of the printed circuit board which is opposite to the first connector. The insulative cover forms a pair of guiding posts retained in said mounting sections and a pair of stand-off sections located at opposite ends thereof for supporting the first connector during the mating process. A metallic cover is attached to the insulative cover. The second connector defines a pair of guiding apertures at opposite ends thereof for receiving said guiding posts.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made to the drawing figures to describe a preferred embodiment of the present invention in detail. Referring to
Referring to
The printed circuit board 12 is in a rectangular shape and forms a first surface on which the first connector 11 is seated and a second surface which is opposite to the first surface. A plurality of electric traces 124 are formed on the first surface to electrically connect with the contacts 111 of the first connector 11. A pair of metal ears 125 are formed on opposite ends of the first connector 11 and stand on the first surface of the printed circuit board 12. A pair of mounting sections are formed at lateral edges of the printed circuit board 12, each of which comprises a narrow opening 121 at an inner side and a wide opening 122 at an outer side. Each mounting section is configured as an h-shape and located adjacent to the first connector 11. Soldering pads 126 are respectively formed on the first and second surfaces of the printed circuit board 12, while located at different sides. Further, a plurality of solder elements 123 are formed on opposite surfaces of a same end of the printed circuit board 12 and contact with the electric traces 124. A plurality of cables 4 are soldered onto the solder elements 123 so as to electrically connect with the first connector 11.
The insulative cover 13 comprises a rectangular base 130 and a pair of stand-off sections 131 extending downwardly from opposite ends of the base 130. A pair of guiding posts 132 respectively extend downward from the base 130 and locate adjacent to the stand-off sections 131. An interval 133 is defined between the stand-off sections 131 and the guiding posts 132 for facilitating the first connector 11 to mate with the second connector 2. The insulative cover 13 is attached to a second surface of the printed circuit board 12 with the guiding posts 132 and stand-off sections 131 retained in the mounting sections of the printed circuit board 12. The guiding posts 132 are received in the narrow openings 121 and protrude beyond the first surface of the printed circuit board 12 so as to provide a guiding function during the mating process. The stand-off sections 131 are received in the wide openings 122 and protrude further than the guiding posts 132 so as to support the first connector 11 during the mating process.
The metallic shell 14 is made by stamping and bending a metal sheet, which comprises a body portion 140 attached to the base 130 of the insulative cover 13. A front wall 141 extends downward from a front edge of the body portion 140 and forms a pair of soldering parts 144 at a lateral edge. The soldering parts 144 are soldered on the soldering pads 126 on the first surface of the printed circuit board 12. A pair of soldering plates 143 extend downwardly from a rear edge of the body portion 140 and are soldered on the soldering pads 126 on the second surface of the printed circuit board 12. Further, a pair of locking portions 142 extend downward from opposite ends of the body portion 140 with distal ends retained in corresponding receiving slots 1311 defined on outer sides of the stand-off sections 131.
Referring to
The insulative housing 21 comprises a body section 215 and a pair of guiding sections 213 at opposite ends thereof. A pair of assembling grooves 214 are defined between the body section 215 and the guiding sections 213 for receiving the metallic shields 22. The body section 215 has a pair of elongated side walls 210 and a pair of end walls 211 connecting with the side walls 210 thereby defining a mating cavity 216 therebetween. A plurality of first contact grooves 2101 are defined at inner sides of the side walls 210 and extend along an up-to-down direction. A plurality of gaps 2102 are defined on an upper side of the side walls 210 and communicate with the first contact grooves 2101. Each gap 2102 is formed between a pair of first contact grooves 2101 in this embodiment. A mating tongue 212 extends upwardly in the mating cavity 216 with a plurality of second contact grooves 2120 defined at opposite sides thereof. Each second contact groove 2120 faces to a corresponding first contact groove 2101. Further, a plurality of blocks 2103 are formed on outer sides of the side walls 210, and each block 2103 is configured as an L-shape. The guiding sections 213 define a pair of guiding apertures 2131 thereon for receiving the guiding posts 132 of the insulative cover 13.
Each contact 23 comprises a body portion 230, a solder portion 231 extending from one end of the body portion 230, a first contact portion 232 extending from the other end of the body portion 230, a connecting portion 233 and a second contact portion 234 extending from the first contact portion 232 and defining a U-shape configuration together with the first contact portion 232. The contacts 23 are assembled on the insulative housing 21 from a bottom side, with the first contact portions 232 received in the first contact grooves 2101 and second contact portions 234 received in the second contact grooves 2120. The contacts 23 are divided into several contact groups, each contact group comprises a pair of contacts 23 in this embodiment.
The metallic shields 22 are assembled on the insulative housing 21 along the up-to-down direction and received in the assembling grooves 214 so as to surround a periphery of the insulative housing 21. Each metallic shield 22 comprises an elongated body portion 220 and a pair of locking arms 223 bending inwardly from opposite ends of the body portion 220. The pair of metallic shields 22 are engaged with each other by cooperation of locking protrusions 2231 and openings 2232 formed on the locking arms 223. A plurality of grounding arms 221 and solder legs 222 extend reversely from an upper edge and a lower edge of the body portion 220 respectively. The grounding arms 221 project into the mating cavity 216 through the gaps 2102 and are received in the first contact grooves 2101. Each grounding arm 221 is located between neighboring contact groups, therefore the second contact groove 2120 which is opposite to the grounding arm 221 is empty. At a bottom side of the body portion 220, a plurality of locking openings 224 are defined for receiving the blocks 2103 on the side walls 210.
The metal tabs 24 are assembled in the mating cavity 216, and each comprises a solder tail 241 projecting into the guiding aperture 2131 for providing a retaining force when the second connector 2 is soldered onto the board 3. Further, the metal tab 24 comprises a locking portion 242 disposed in the mating cavity 216.
Referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
5634810 | Niitsu et al. | Jun 1997 | A |
8292635 | Little et al. | Oct 2012 | B2 |
20050282437 | Fan | Dec 2005 | A1 |
20060014422 | Fan | Jan 2006 | A1 |
20060014423 | Fan | Jan 2006 | A1 |
20060276060 | Takano | Dec 2006 | A1 |
20110053399 | Fahllund et al. | Mar 2011 | A1 |
20130090001 | Kagotani | Apr 2013 | A1 |
20130149908 | Little et al. | Jun 2013 | A1 |
20130176696 | Sun | Jul 2013 | A1 |
20130183850 | Kogotani | Jul 2013 | A1 |
20130316566 | Little et al. | Nov 2013 | A1 |
20130337681 | Little et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
531073 | May 2003 | TW |
Number | Date | Country | |
---|---|---|---|
20130316566 A1 | Nov 2013 | US |