The present invention relates to an electrical connector, such as a radio frequency connector. In particular, the present invention relates to a high-density electrical connector assembly with a high float bullet option for increased tolerance.
An RF connector is an electrical connector designed to work at radio frequencies in the multi-megahertz range. Typically, RF connectors are used in a variety of applications such as wireless telecommunications applications, including WiFi, PCS, radio, computer networks, test instruments, and antenna devices. In one application, a plurality of individual connectors are ganged together into a single, larger connector housing for electrically and physically connecting two or more printed circuit boards together.
One example of an RF connector interface is the sub-miniature push-on (SMP) interface. SMP is commonly used in miniaturized high frequency coaxial modules and is offered in both push-on and snap-on mating styles and is often used for PC board-to-board interconnects. For these applications, the conventional SMP interface utilizes a male connector on each of the PC boards and a female-to-female adapter mounted in between to complete the connection. The female adapter is often called a “bullet” and is used to provide a flexible link between the male connectors. This flexible link typically allows 0.020 inches of radial float and 0.010 inches of axial float, where radial float and axial float refer to the ability to tolerate axial and radial misalignment. For example, radial misalignment occurs when the male connector does not line up properly with the female connector (e.g., off-center). When connecting together two PCBs together using a multiple connectors on each PCB (e.g., a grid pattern), radial misalignment can be the result of manufacturing differences in the spacing between the individual connectors on a first PCB relative to the spacing between each of the individual connectors on the second PCB due to manufacturing variance of the PCB or the electronic package where it is mounted. For example, radial misalignment can occur when the tip of a male connector is centered over the center of the receptacle, but the base of the male connector (mounted to the PCB) is off-center. Axial misalignment occurs when a connector mated distance from the corresponding receptacle can vary due to positional tolerance of the PCB and the electronic package. Additionally, often one male connector will be specified as a snap on interface and the other as a push on to ensure that the bullet adapter remains fixed in the same male connector if the PC boards are separated. Bullets are also typically available in multiple lengths to allow for different board spacing.
Another aspect of conventional connectors is that they may support “blind mate” gathering. Generally, a blind mate connector is a connector in which, during the mating process, a human operator can neither see nor feel it to ensure that the connector is correctly aligned. “Blind-mate” refers to a feature that allows an operator to join the connectors without visually seeing the connector interfaces mate. Blind mate connectors typically have self-aligning features which allow for a small misalignment when mating.
Conventional multi-position RF connectors include a conductive inner portion that is surrounded by an insulating outer portion (or “insulator”), where at the mating interface, the insulator is recessed relative to the conductive outer portion. Conventional multi-port RF connectors also typically include a shared conductive outer portion in the form of a common metal body between individual connectors, where the metal body is formed using a manufacturing method such as zinc die casting. Conventional RF connectors with a mechanical float provision typically come in plug-to-plug configurations, meaning that the connector is adapted to male connectors on each end for connecting with corresponding female receptacles.
One problem associated with conventional multi-port RF connectors is that the density of individual connectors is limited by the shape and design of the insulator and conductive outer portion. Specifically, because conventional insulators are recessed relative to the conductive outer portion, the insulator must be at least as large as the conductive outer portion plus additional tolerances. As RF connector applications have begun to require a greater number of individual connections between components, RF connectors using conventional recessed designs have necessarily increased in size to accommodate this. Larger connectors require more physical space in order to provide the necessary contacts, which make the connectors less applicable to high density systems requiring smaller connectors and more expensive to produce.
Another problem associated with conventional RF connectors is that such connectors typically do not have the flexibility to customize the degree of axial or radial float. As described above, float is the tolerance of physical movement of the connectors once mated in a fixed position. Some conventional connectors are configured for high-float applications. For example, when connecting two PCBs, it may be desirable to use a high axial float connector in order to accommodate variations in the distances between various components on the PCBs that are being connected. Alternately, it may be desirable to use a low- or no-float connector when connecting PCBs where a secure fit is achievable and there is less likely to be movement (i.e., stresses) between the PCBs or if the connector contains the aligning features that control position such as close tolerance guide pins. Using conventional connectors, the amount of float provided by connectors is fixed and cannot be applied to either high- or low-float applications without using a different connector.
Accordingly, there is a need for a modular and scalable RF connector for high-density gang mate solutions for both high-float and low-float applications. There is also a need for a high density connector that has a high mechanical float while maintaining high isolation and low-loss electrical performance.
Accordingly, the present invention provides a high float bullet adapter, that comprises an inner contact, an insulator that supports the inner contact, and an outer ground body that holds the inner contact and the insulator, wherein an end of the insulator extends beyond the inner contact and the outer ground body, and the end of the insulator having a lead-in geometry.
The present invention may also provide a high float connector assembly, that comprises a first connector that has at least a first contact, a second connector that is configured to mate to the first connector, the second connector having at least a second contact, a high float bullet adapter disposed between the first and second connectors, the high float bullet adapter includes a housing that has at least one hole; and at least one high float bullet subassembly that is received in the hole of the housing of the high float bullet adapter, at least one high float bullet subassembly that has an inner contact, an insulator that supports the inner contact, and an outer ground body that holds the inner contact and the insulator, the insulator has an end with a lead-in geometry, the inner contact that engages the first and second contacts of the first and second connectors, respectfully, wherein the at least one high float bullet subassembly provides float between the first and second connectors.
With those and other objects, advantages, and features of the invention that may become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the invention, the appended claims, and the several drawings attached herein.
Several preferred embodiments of the invention are described for illustrative purposes, it being understood that the invention may be embodied in other forms not specifically shown in the drawings.
The subject matter described herein relates an electrical connector, such as a radio frequency (RF) connector, that is applicable to high density gang-mate printed circuit board PCB-to-PCB solutions in either high float or low float configurations, where float is the tolerance of physical movement or misalignment compensation of the connectors once mated in a fixed position. More specifically, the present invention provides a connector that may have a protruding insulator from a plug interface thereof that has a narrowing shape, such as a pyramid or “dart” shaped lead-in geometry at its tip. Additionally, the present invention includes a bi-gender bullet that has a plug interface on one end and a receptacle interface on the opposite end for providing modular add-on float capability between connectors.
Regarding the first aspect of the present invention, a dart shaped insulating material protrudes from an outer metal housing and protects a recessed, inner contact to facilitate gathering. As used herein, gathering is the process of aligning a plug and a receptacle during the mating process. For example, gathering may include inserting the tip of the plug into a cone (or other) shaped receptacle of the receptacle. Selection of specific shapes of both the tip of the plug and the receptacle aids in aligning the tip to the center of the receptacle through physical contact with the cone and redirection of the insertion forces to a desired position. The present invention is an improvement over the prior art at least in that, by using the protruding insulator for gathering, the geometry of the plug interface required to gather shrinks, and thus a smaller lead-in geometry is possible on the mating receptacle interface.
Another advantage of the present invention is that the inverted pyramid gathering feature on the receptacle insulator aids with blind mate gathering (plugging the connector into a board without human intervention) of the receptacle center contact pin. Yet another advantage of the present invention is that the insulator on the plug provides closed entry protection for female contact on the plug. In other words, it may prevent unwanted contact between the inner contact portion and other portions of the plug (e.g., the outer casing) or portions of the mating receptacle interface.
Regarding the second aspect, the present invention is an improvement over the prior art at least in that the bi-gender bullet allows for increasing the amount of mechanical float between a male and female connector assembly simply by adding the bi-gender bullet between the connectors. Low-float configurations are made by directly mating a male and a female connector without using a bullet therebetween. Thus, the bi-gender bullet of the present invention allows for selecting between low-float and high-float configurations without requiring a change in the gender of either of the connectors. This modular design allows for simpler, cheaper, and more flexible connector products that may use either high float or low float configurations. In contrast, most conventional designs require that the mating connectors have the same interface for high-float configurations.
A bullet according to the present invention may be retained on the standard plug interface with a plastic carrier housing that snaps onto the plug housing. The snap-on feature on the plug housing converts any non-bulleted solution to one having one or more bullets added for additional radial float between connectors.
Turning now to
As used herein, the term “contact sub-assembly” refers to an individual connector that includes at least a contact portion, but may also include an insulator portion and a ground body portion, for physically and electrically interfacing with another connector or a PCB. As shown in
The plug assembly 100 preferably includes two rows of contact sub-assemblies 102A and 102B. It is appreciated, however, that other configurations of the contact sub-assemblies may be used without departing from the scope of the subject matter described herein. For example, a single row, three or more rows, and staggered rows of the contact sub-assemblies may be located in the housing 210. The contact sub-assembly 102A may include a contact 104A comprising a conductive material, such as copper, hardened beryllium copper, gold- or nickel-plating, and the like for carrying electrical signals. The contact 104A may be bent at a right angle in the configuration shown, however, it is appreciated that other configurations, such as straight, may also be used without departing from the scope of the subject matter described herein. The contact 104A is preferably enclosed within an outer insulator 106A that has two parts, where a first part is configured to encase the portion of the contact 104A which is bent at the right angle, and a second part which is detachable from the first part and configured to be inserted into a receptacle as will be described in greater detail below. The contact 104A and the insulator 106A may be inserted into a ground body 108A which may be made of a conductive material or materials, such as phosphor bronze and/or selective gold- or nickel-plating, and the like.
Like the contact sub-assembly 102A, the contact sub-assembly 102B also comprises a combination of a contact 104B that is located inside of an insulator 106B, both of which are located inside of a ground body 108B. However, in contrast to the contact sub-assembly 102A, the length of the contact 104B that connects to the PCB may be shorter than the contact 104A in order to adjust for the location of the contact sub-assembly 102A on the top row of the housing 110 and the contact sub-assembly 102B on the bottom row of the housing 110. In other words, in order for all of the contact portions 102A and 102B to extend substantially equally in length into the PCB (not shown), the contacts associated with each row may be different lengths because the bottom row of the housing 110 may be located closer to the PCB than the top row.
A plurality of the contact sub-assemblies 102A or 102B may be secured together in a housing 110. The housing 110 may be made, for example, from 30% glassed-filled polybutylene terephthalate (PBT), which is a thermoplastic polymer. The housing 110 may include a plurality of holes 114 preferably in a grid-like pattern for receiving the individual contact sub-assemblies 102A or 102B. The contact sub-assemblies 102A and 102B extend through the holes 114 to define a plug interface 120 on a first end of the housing 110 and a PCB interface 122 on the other end. The housing 110 may also include one or more guide pin holes 116 for receiving stainless steel guide pins 112. The guide pins 112 may be used to securely physically connect the plug assembly 100 to other receptacle assemblies or high-float option bullet adapters, which will be described in greater detail below.
The plug housing 110 may also include various features for securing to a high float bullet adapter or receptacle. For example, one or more nubs 124 may protrude from the top portion of the housing 110 and be made of the same material as the housing 110 (e.g., plastic). Similarly, one or more nubs 126 may be located on opposite sides of the housing 110 that are different from the plug interface 120 and the PCB interface 122. The nubs 124 and 126 may be received by a corresponding nub loop located on a high float bullet adapter, which will be described in greater detail with respect to
Turning to
Guide pin holes 224 may be located in the housing 210 for receiving guide pins (not shown in
Each individual bullet sub-assembly 300 is configured such that the insulator 304 preferably extends beyond the contact 302 and ground body 306 and thus protrudes from its interface at its end 308. The end 308 preferably has a lead-in geometry, such as a substantially square-based pyramid, or “dart”, shape. This geometry for the insulator portion 304 is preferably narrow to allow for ganging closer together a plurality of the individual bullet sub-assemblies 300 in a more compact housing. However, it is appreciated that other lead-in geometries may be used for the insulator portion 304 without departing from the scope of the subject matter described herein.
The high float bullet adapter housing 402 may include a plurality of holes 404 preferably in a grid-like pattern for receiving the high-float bullet sub-assemblies 300. The high-float bullet sub-assemblies 300 extend through the holes 404 to connect the plug 100 to the receptacle 200. The high float bullet adapter housing 402 may also include one or guide pin more holes 406 for receiving guide pins 112. The guide pins 112 may be used to securely physically connect the plug assembly 100 to the high-float option bullet adapter 400. The guide pins 112 may be formed of stainless steel, for example.
The high float bullet adapter housing 402 may further include nub loops 408 and 410 that extend beyond the face of the holes 404 and correspond to the shape of the nubs 124 and 126 located on the plug 100 for receipt of the same. The nub loops 408 and 410 physically secure the high float bullet adapter housing 402 with the plug housing 110 in a snapping engagement. However, it is appreciated that the attachment for housings 110 and 402 other than the nubs 124-126 and the nub loops 408-410 shown in
Also similar to the straight receptacle configuration 200, the individual receptacle sub-assemblies 502 may be secured together in a housing 510. For example, the housing 510 may include a plurality of holes 512 preferably in a grid-like pattern for receiving the individual receptacle sub-assemblies 502 and the high-float bullet sub-assemblies 300, and/or the plug interface 120 of the plug 100. The receptacle sub-assemblies 502 extend through the holes 512 to connect the plug 100 to the receptacle 200. The housing 510 may also include one or guide pin more holes 514 for receiving the guide pins 112. The guide pins 112 may be used to securely physically connect the receptacle assembly 500 to the high-float option bullet adapter 400. The housing 510 may be formed of plastic and may include additional holes for receiving one or more guide pins for maintaining alignment between connectors. In contrast to the straight receptacle 200, the housing 510 of the right angle receptacle 500 maybe larger than the housing 210 in order to accommodate the increased length associated with the receptacle sub-assemblies 502.
In the connector assembly configuration shown in
As described above, the high float bullet adapter 400 includes a plurality of high-float bullet sub-assemblies 300 for interfacing between the male portion of the plug 100 and the female portion of the receptacle 500, where each high-float bullet sub-assembly 300 comprises the conductor 302, the insulator 304, and the ground body 306. Because the high float bullet adapter 400 can be designed to be compatible with the configurations of the plug 100 and the receptacle 500, the high float bullet adapter 400 may be inserted or removed from between the plug assembly 100 and the receptacle assembly 500 in order to easily and quickly convert between high float and low float configurations.
The shape of the high-float bullet sub-assemblies 300 allows for increased axial and radial movement (i.e. float) between the plug and receptacle assemblies and a more compact footprint while maintaining a secure electrical connection. Specifically, the shape of the high-float bullet sub-assemblies 300 includes the insulator 304 of each individual bullet sub-assembly 300 preferably extending beyond the contact 302 and thus protruding from its interface with a substantially square-based pyramid, or “dart”, shaped lead-in geometry. This geometry for the insulator portion 304 is smaller than conventional lead-in geometries and allows for ganging closer together a plurality of the individual bullet sub-assemblies 300 in a more compact housing while increasing the degree of float. Each of these advantages over the prior art may be useful in a variety of applications, but particularly in RF connector applications such as wireless telecommunications applications, including WiFi, PCS, radio, computer networks, test instruments, and antenna devices.
The outer ground body 810, typically made of metal, which surrounds the insulator portion 802 may include four sidewalls 812 corresponding to each side of the insulator portion 802. The tips 814 of the sidewalls 812 may be curved inward toward the center of the bullet 800 and may be located in between the corners 804 of the dielectric portion 802. The outer ground body 810 may be composed as one-piece or multiple pieces secured together with a dovetail joint 816, for example, or any other suitable means. The base 822 of the ground body 810 may further include tail portions 818 on each side in the embodiment shown. Tail portions 818 are preferably curved outwardly, as seen in
As seen in
As seen in
Although certain presently preferred embodiments of the disclosed invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various embodiments shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the appended claims and the applicable rules of law.
Number | Name | Date | Kind |
---|---|---|---|
2603681 | Salisbury | Jul 1952 | A |
2999998 | Cole | Sep 1961 | A |
3713075 | Clark | Jan 1973 | A |
4227765 | Neumann et al. | Oct 1980 | A |
4466048 | Schwab | Aug 1984 | A |
4541032 | Schwab | Sep 1985 | A |
4674809 | Hollyday et al. | Jun 1987 | A |
4726787 | Stine | Feb 1988 | A |
4728301 | Hemmer et al. | Mar 1988 | A |
4789351 | Fisher et al. | Dec 1988 | A |
4846731 | Alwine | Jul 1989 | A |
4857014 | Alf et al. | Aug 1989 | A |
4925403 | Zorzy | May 1990 | A |
5062808 | Hosler, Sr. | Nov 1991 | A |
5137462 | Casey et al. | Aug 1992 | A |
5217391 | Fisher, Jr. | Jun 1993 | A |
5257161 | Ocerin | Oct 1993 | A |
5329262 | Fisher, Jr. | Jul 1994 | A |
5548088 | Gray et al. | Aug 1996 | A |
5647749 | Atoh et al. | Jul 1997 | A |
5700160 | Lee | Dec 1997 | A |
5879177 | Honma | Mar 1999 | A |
5980290 | Meynier et al. | Nov 1999 | A |
6059577 | Eriksson | May 2000 | A |
6079986 | Beshears | Jun 2000 | A |
6166615 | Winslow et al. | Dec 2000 | A |
6174206 | Yentile et al. | Jan 2001 | B1 |
6224421 | Maturo, Jr. | May 2001 | B1 |
6497579 | Garbini | Dec 2002 | B1 |
6663434 | Wu | Dec 2003 | B1 |
6695622 | Korsunsky et al. | Feb 2004 | B2 |
6773285 | Bernat et al. | Aug 2004 | B2 |
6773286 | Wu | Aug 2004 | B1 |
6814630 | Tomasino | Nov 2004 | B1 |
6827608 | Hall et al. | Dec 2004 | B2 |
6835079 | Gentry et al. | Dec 2004 | B2 |
6908325 | Bernat et al. | Jun 2005 | B2 |
6976862 | Ormazabal Ocerin | Dec 2005 | B1 |
7112078 | Czikora | Sep 2006 | B2 |
7210941 | Rosenberger | May 2007 | B2 |
7229303 | Vermoesen et al. | Jun 2007 | B2 |
7306484 | Mahoney et al. | Dec 2007 | B1 |
7442080 | Tsen | Oct 2008 | B1 |
7445458 | Yamane | Nov 2008 | B1 |
7445467 | Matsuo | Nov 2008 | B1 |
7478475 | Hall | Jan 2009 | B2 |
7563133 | Stein | Jul 2009 | B2 |
7645151 | Moll et al. | Jan 2010 | B2 |
7717716 | Dahms | May 2010 | B2 |
7731528 | Feldman et al. | Jun 2010 | B2 |
7762854 | Peng | Jul 2010 | B1 |
7896655 | Blasick et al. | Mar 2011 | B1 |
8323058 | Flaherty et al. | Dec 2012 | B2 |
8360789 | Yin et al. | Jan 2013 | B2 |
8568163 | Burris et al. | Oct 2013 | B2 |
8573983 | Zieder | Nov 2013 | B2 |
8597050 | Flaherty et al. | Dec 2013 | B2 |
8734167 | Aimoto | May 2014 | B2 |
8801459 | Mrowka | Aug 2014 | B2 |
20020061670 | Havener et al. | May 2002 | A1 |
20020111057 | Bernat et al. | Aug 2002 | A1 |
20020142625 | Berghorn et al. | Oct 2002 | A1 |
20040014334 | Lu | Jan 2004 | A1 |
20040038586 | Hall et al. | Feb 2004 | A1 |
20040229490 | Bernat et al. | Nov 2004 | A1 |
20050037650 | Hsu et al. | Feb 2005 | A1 |
20060024985 | Nagata et al. | Feb 2006 | A1 |
20060194465 | Czikora | Aug 2006 | A1 |
20060258209 | Hall | Nov 2006 | A1 |
20070026698 | Rosenberger | Feb 2007 | A1 |
20090149086 | Dahms | Jun 2009 | A1 |
20090186495 | Taylor | Jul 2009 | A1 |
20090215295 | Tseng | Aug 2009 | A1 |
20090239422 | Fukazawa et al. | Sep 2009 | A1 |
20090264008 | Matsuda et al. | Oct 2009 | A1 |
20100007441 | Yagisawa et al. | Jan 2010 | A1 |
20100075536 | Kubo | Mar 2010 | A1 |
20110151714 | Flaherty et al. | Jun 2011 | A1 |
20110237123 | Burris et al. | Sep 2011 | A1 |
20110237124 | Flaherty et al. | Sep 2011 | A1 |
20120295478 | Mrowka | Nov 2012 | A1 |
20140193995 | Barthelmes et al. | Jul 2014 | A1 |
20140206218 | Liu et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
202012000487 | Feb 2012 | DE |
Number | Date | Country | |
---|---|---|---|
20140193995 A1 | Jul 2014 | US |