1. Field of the Invention
The present invention relates to an electrical connector assembly for being mounted to a circuit board, and more particularly to an electrical connector assembly with an improved metallic shell.
2. Description of Related Art
With rapid development of electronic technologies, electrical connectors have been widely used in electronic devices for exchanging information and data with external devices. A conventional connector usually includes an insulative housing, a plurality of contacts received in the insulative housing and a metallic shell enclosing the insulative housing. Each contact includes a soldering portion extending beyond the insulative housing for being soldered to a circuit board.
In order to meet the requirements of stable signal transmission and high effective transmission of the electronic devices, strong mating stabilization of the electrical connector needs to be ensured. However, a metallic shell of a conventional SFP connector usually includes two pieces of metallic cages mating with each other. In assembling, such two pieces of metallic cages may easily occur instability which will result in weak shielding effects. As a result, on one hand, the integral strength of the metallic shell is not good enough; on the other hand, when a mating plug is inserted into the SFP connector, normal signal transmission might be disturbed because of the poor shielding.
Hence, an electrical connector assembly with improved metallic shell is desired.
The present invention provides an electrical connector assembly including a plurality of stacked connectors and a metallic shell enclosing the stacked connectors. The stacked connectors include an insulative housing and a plurality of contact groups received in the insulative housing. The metallic shell includes a first cage, a second cage for mating with the first cage from a bottom side, and a third cage for mating with the first cage from a rear side. The first cage includes a base portion and a pair of restricting portions bent downwardly from opposite lateral sides of the base portion. Each restricting portion includes a plurality of recesses at its bottom edge and a plurality of press-fit legs each of which is located between the adjacent two recesses. The second cage includes a shielding plate and a plurality of locking arms bent upwardly from opposite lateral sides of the shielding plate. Each locking arm includes a plurality of slits and a plurality of connecting portions each of which is located between the adjacent two slits. When the second cage is assembled to the first cage, the press-fit legs extend through the slits and the connecting portions are received in the recesses.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the described embodiments. In the drawings, reference numerals designate corresponding parts throughout various views, and all the views are schematic.
Reference will now be made to the drawing figures to describe the embodiments of the present invention in detail. In the following description, the same drawing reference numerals are used for the same elements in different drawings.
Referring to
Referring to
Referring to
According to the illustrated embodiment of the present invention, the mating portions 11 along a height direction (a vertical direction) of the insulative housing 10 present two storeys and four lines. Referring to
Referring to
Referring to
The first contact group 21 includes a plurality of first contacts 211 and at least one spacer 212 over-molding the first contacts 211. Each first contact 211 includes a contacting section 2111, an extending section 2112 extending rearwardly from the contacting section 2111, a bent section 2113 bent downwardly from the extending section 2112 and a press-fit leg 2114 extending from the bent section 2113. Each first contact 211 is of an L-shaped configuration taken from an integral view.
The contacting sections 2111 are curved and elastic. When the contacting sections 2111 are received in the passageways 14, they partly extend into the mating slot 13 for easily mating with the mating plug. The press-fit legs 2114 are of V-shaped or Z-shaped configurations. As shown in
The contacting sections 2111 of the first contact group 21 and the second contact group 22 are bent along opposite directions and are arranged in a face-to-face manner. The contacting sections 2111 of the first contact group 21 are located between the contacting sections 2111 of the second contact group 22 along the vertical direction. Similarly, the contacting sections 2111 of the third contact group 23 and the fourth contact group 24 are bent along opposite directions and are arranged in a face-to-face manner as well. The contacting sections 2111 of the third contact group 23 are located between the contacting sections 2111 of the fourth contact group 24 along the vertical direction.
The spacer 212 includes a first spacer 2121 over-molding the extending sections 2112 and a second spacer 2122 over-molding the bent sections 2113 and/or the press-fit legs 2114. The first spacer 2121 includes a pair of opposite inclined surfaces 2123 for easily guiding insertion of the first spacer 2121 into the insulative housing 10. According to the illustrated embodiment of the present invention, both the first spacer 2121 and the second spacer 2122 define a plurality of heat-dissipating slots 2124 so that heat generated by each contact group can be dissipated to the air through such heat-dissipating slots 2124.
When the first contact group 21 is assembled to the insulative housing 10, under the guidance of the inclined surfaces 2123, lateral sides of the first spacer 2121 is received in the guiding slot 121. Besides, the second spacer 2122 is perpendicular to the first spacer 2121. The second spacer 2122 includes a pair of locking blocks 2125 secured in the locking slots 122 and a pair of restricting blocks 2126 connected above corresponding locking blocks 2125 for being received in the restricting slots 123. As a result, the first contact group 21 can be prevented from withdrawing from the insulative housing 10.
Referring to
Referring to
Each restricting portion 2012 includes a plurality of bent protrusions 2018 at the rear side thereof. Each restricting portion 2012 includes a rear cutout 20121 for receiving the first block 16. Besides, the bottom edges of the restricting portions 2012 is inserted into the positioning slits 171 of the second blocks 17. As a result, the first cage 201 can be stably fixed to the insulative housing 10.
Each restricting portion 2012 includes a plurality of openings 2019 and two restricting pieces 20191 protruding inwardly towards the first cage 201. One of the restricting pieces 20191 is adapted for abutting against a front side of the receiving portion 12, and the other of the restricting pieces 20191 is adapted for abutting against a top side of the fixing slot 18. As a result, the first cage 201 can be stably fixed to the insulative housing 10.
The second cage 202 includes a shielding plate 2021 and a plurality of locking arms 2022 bent upwardly from opposite lateral sides of the shielding plate 2021. Each locking arm 2022 includes a plurality of slits 2023 and a plurality of connecting portions 2024 each of which is located between the adjacent two slits 2023. Each shielding plate 2021 includes a plurality of engaging portions 2025 each of which extends towards corresponding slit 2023. When the press-fit legs 2014 extend through the slits 2023, the locking arms 2022 are located outside of corresponding restricting portions 2012 so that the corresponding restricting portions 2012 are limited along an inside-to-outside direction, while the engaging portions 2025 are located inside of the protrusions 206 so that the corresponding restricting portions 2012 are limited along an outside-to-inside direction. As a result, the integral strength of the first cage 201 and the second cage 202 is improved and signal transmission can be protected because of the excellent shielding effect. Besides, the shielding plate 2021 includes a plurality of second slits 2026.
Referring to
A joint of the first shielding portion 2031 and the second shielding portion 2032 defines a plurality of through holes 2035 through which the tabs 2016 are inserted. Joints of the third shielding portions 2033 and the second shielding portion 2032 define a plurality of through holes 2036 to lock with the bent protrusions 2018. According to the illustrated embodiment of the present invention, the through holes 2035, 2036 are of rectangular configurations, the first cage 201 and the third cage 203 can be well assembled with the tabs 2016 and the bent protrusions 2018 respectively locking in the through holes 2035, 2036. Simultaneously, the shielding effect of the first cage 201 and the third cage 203 can be ensured.
The metallic shell 200 includes a plurality of separating plates 204 between the first cage 201 and the second cage 202. Each separating plate 204 includes a plurality of L-shaped locking tabs 2041 fixed to the base portion 2011 of the first cage 201 and a plurality of press-fit portions 2042 extending downwardly through the shielding plate 2021 of the second cage 202. The locking tabs 2041 extend through the first slits 2017, and the press-fit portions 2042 extend through the second slits 2026 for supporting the first cage 201 and the second cage 202. Besides, each separating plate 204 further includes a pair of upward and downward protuberances 2043 on top and bottom side thereof.
The metallic shell 200 includes a plurality of grounding pieces 205 surrounding around the first cage 201 and the second cage 202. At least one of the grounding pieces 205 defines a through opening 2051 to receive the upward protuberance 2043. According to the illustrated embodiment of the present invention, the grounding pieces 205 are soldered to the first cage 201 and the second cage 202 via spot welding. The third cage 203 is fixed to the first cage 201 via spot welding. The second cage 202 is fixed to the first cage 201 via spot welding as well.
It is to be understood, however, that even though numerous characteristics and advantages of preferred and exemplary embodiments have been set out in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and that changes may be made in detail within the principles of present disclosure to the full extent indicated by the broadest general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
201310670895.5 | Dec 2013 | CN | national |