The invention relates to a connector arrangement comprising a connector and a cable which is connected to the connector. The cable guides at least one pair of conductors for transmitting a differential signal in each case.
DE 202015000753 U1 describes a connector arrangement comprising a sleeve part. In this case, a pair of cores for transmitting a differential signal runs in a cable, wherein the cores of the pair of cores are at a first mutual distance in the interior of the cable. Starting from the sheathed cable section, the two cores of the pair of cores run away from one another in the direction of the connector in an intermediate section until they enter a guide section of the connector in which they are at a second mutual distance which is greater than the first mutual distance.
US 2007/259568 A1 describes a connector arrangement comprising a connector and a cable which is connected to the connector, which connector and cable each have at least one pair of conductors for transmitting a differential signal, wherein the cable has a first section and the connector has a second section in which the pair of conductors has electric contacts, and wherein the conductors are at a first mutual distance (X) in the first section and are at a second mutual distance (Y), which is greater than the first distance, in the second section, wherein an intermediate section, in which the distance between the conductors of a pair of conductors is increased in the direction of a interface-side end of the connector, is formed between the first section and the second section.
WO 2012/078824 describes a connector arrangement comprising a connector and a cable which is connected to the connector, which connector and cable each have at least one pair of conductors for transmitting a differential signal, wherein the cable has a first section and the connector has a second section in which the pair of conductors has electric contacts.
Owing to the change in distance between the cores or conductors, the differential impedance of said cores or conductors changes, as a result of which an interference point can occur.
This is a state for which improvement is sought.
Against this background, the object of the present invention is to specify a connector arrangement for transmitting differential signals, which connector arrangement has improved transmission characteristics.
According to the invention, this object is achieved by an assembly having the features of Patent Claim 1 and/or by a method having the features of Patent Claim 13.
According to the said patent claims, the following are provided:
In the text which follows, the first section is understood to be a section in the cable in which the conductors are guided in a differential manner and are at a first mutual distance. Differential guiding means that a plurality of conductors are jointly shielded by one shield for a pair of conductors.
The distance between the conductors is increased in the direction of the connector in at least one part of the intermediate section. In the text which follows, this region is called the intermediate section. The conductors are separately shielded by a conductor shield in at least one part of the intermediate section. In the text which follows, this region is called the shield section. The conductor shield at least partially shields the conductors from one another. It is self-evident that the intermediate section and the shield section both can coincide and also can be formed immediately adjacent to one another.
In the second section, the conductors are preferably guided in a differential manner and are at a second mutual distance.
The idea on which the present invention is based is that of routing a signal in a differential manner in the first section in the cable and in the second section in the connector, whereas the signal is routed in a single-ended manner in the shield section.
This means that the two conductors of the pair of conductors are shielded against external electromagnetic influences in the first section and the second section by a common shield for a pair of conductors in each case. The conductors of the pair of conductors are therefore coupled to one another and electrically influence one another.
In the shield section, the conductors are each shielded by an isolated conductor shield against external electromagnetic influences and also against influences of the respectively other conductor. As a result, the coupling between the conductors is reduced. As a result, an interference point in the differential mode can be considerably reduced. In particular, it can be advantageous to accept an interference point in the common mode when a useful signal is transmitted in the differential mode and therefore an interference point in the differential mode can be reduced.
Advantageous refinements and developments can be gathered from the further dependent claims and also from the description with reference to the figures of the drawing.
According to one preferred development, the conductor shield is designed to surround the conductors over the entire circumference. Therefore, the undesired coupling between the conductors in the intermediate section can be minimized. Therefore, an interference point can be further reduced.
According to one preferred development, the conductor shield has a conductive spacer between the conductors, the said conductive spacer being designed to determine the profile of the conductors. Therefore, the impedance in this region can be adjusted particularly accurately.
According to one preferred development, an impedance in the first and second section and also in the intermediate section is in each case tuned with respect to the impedance in the other sections. Therefore, it is possible to reduce interference points in the common mode or differential mode.
In particular, it is expedient to tune the impedance by changing a diameter of the conductors, owing to a distance of the conductors from the conductor shield or shield for a pair of conductors.
According to one preferred development, the first section has a first insulating part between the pair of conductors and the shield for a pair of conductors, and the intermediate section has a second insulating part between the conductors and the conductor shield, wherein a thickness of the first insulating part is greater than a thickness of the second insulating part.
Therefore, the capacitance between the conductors and the shield of the said conductors is increased in the intermediate section in comparison to the first section. Since the capacitance between the two conductors reduces within the widening section on account of the increasing distance between the two conductors, the increase in capacitance between the conductors and the conductor shield can balance the total capacitance of a pair of conductors within the intermediate section and match it to the total capacitance of the pair of conductors in the first section. Matching of the differential impedance of the conductors in the intermediate section to the differential impedance of the respective pair of conductors in the first section can be achieved in this way.
According to one preferred development, the conductor shield is composed of a plurality of parts, in particular of half-shells. A multipartite conductor shield can be fitted in a particularly simple manner. In addition, a conductor shield with two half-shells has particularly expedient electrical properties in which a production-related air gap between the plurality of parts can be kept small, and therefore the mutual coupling between the conductors can be further reduced.
In order to further reduce the mutual coupling between the conductors, the plurality of parts can have a mutually corresponding, uneven surface profile. By way of example, the surface profiles can have a serrated profile, in particular in a W or V shape, which serrated profiles respectively form a negative relative to one another.
As an alternative, the conductor shield can be of unipartite design and have bushings in which a conductor is received in each case. This embodiment is particularly robust and can ensure the mutual coupling between the conductors even under vibration influences or other mechanical loads.
According to one preferred development, the conductor shield has a plurality of separate conductor shields for the conductors. It is self-evident that the conductor shield does not have to be of coherent design in any way. Rather, it may also be expedient to shield the conductors by separate individual shields in the shield section. The separate conductor shields can be electrically contact-connected to one another.
According to one preferred development, the conductor shield follows a contour of the conductors throughout the shield section. In this way, the distance between the conductors and the conductor shield can be kept constant. This is advantageous in respect of adjusting the impedance.
According to one preferred development, the conductor shield is electrically conductively connected to the shield for a pair of conductors in the first and/or in the second section. The shields are DC-coupled in this way.
It is self-evident that the features cited above and those still to be explained below can be used not only in the respectively specified combination but also in other combinations or on their own, without departing from the scope of the present invention.
The above refinements and developments can, where appropriate, be combined with one another in any desired manner. Further possible refinements, developments and implementations of the invention also comprise not explicitly cited combinations of features of the invention that are described above or below in respect of the exemplary embodiments. In particular, a person skilled in the art will also add individual aspects in this case as improvements or additions to the respective basic form of the present invention.
The present invention will be explained in greater detail below using the exemplary embodiments which are shown in the diagrammatic figures of the drawing, in which:
The accompanying figures of the drawing are intended to provide a further understanding of the embodiments of the invention. They illustrate embodiments and, in conjunction with the description, serve to explain principles and concepts of the invention. Other embodiments and many of the advantages mentioned become apparent in view of the drawings. The elements shown in the drawings are not necessarily shown true to scale in relation to one another.
In the figures of the drawing, identical, functionally identical and identically acting elements, features and components are respectively provided with the same reference symbols—unless stated otherwise.
The figures are described below in a coherent and comprehensive manner.
The connector arrangement 1 according to the invention has a connector 2 and a cable 3 which, at the cable-side end 4 of the connector 2, is mechanically and electrically connected to the connector 2.
The cable 3 is shielded by a shield 51, 52 for a pair of conductors. At the same time, the shield 51 for a pair of conductors forms an external conductor of the cable. This shield 51 for a pair of conductors can be in the form of a wire mesh or in the form of an electrically conductive film-type shield. The end of the shield 51 for a pair of conductors is placed around a supporting sleeve 6 which is fitted onto the shield 51 for a pair of conductors, and the shield 51 for a pair of conductors is axially fixed in relation to the conductors 8 of the cable 3. A cable sheath 7 which is composed of a plastic material and is placed around the shield 51 for a pair of conductors of the cable 3 is arranged in front of the supporting sleeve 6.
A plurality of conductors 8, here a pair of conductors, are guided within the shield 51 for a pair of conductors. The conductors 8 are each encased by a first insulating part 9. The conductors 8 respectively form a core with the respective insulating part 9. The conductors 8 are twisted with one another (twisted pair cable). As an alternative, the conductors 8 can also run in parallel (twin ax(ial) cable). The pair of conductors transmits a differential signal, for example a high-frequency differential signal.
The conductors 8 run in the longitudinal direction L of the cable 3 and are at a first mutual distance X within the cable 3 in the first section 10.
A further shield 52 for a pair of conductors, which initially jointly shields the pair of conductors in the further profile of said pair of conductors, is formed following the shield 51 for a pair of conductors.
The region of the cable 3 as far as the conductor shield 53 therefore forms the first section 10.
In
The shield 52 for a pair of conductors has a conductor shield 53, which splits the pair of conductors to form individual conductors, between the conductors 8 in a interface-side end region. Therefore, the shield 52 for a pair of conductors is both a shield for a pair of conductors and also a conductor shield in the end region. The conductor shield 53 can be of unipartite design or multipartite design with the shield 52 for a pair of conductors.
Unipartite shields 52, 53 can be cast or inserted and fixed during assembly. Reference is made to
The distance between the individual conductors 8 increases from the first mutual distance X to the greater second mutual distance Y within the shield 52 for a pair of conductors in the intermediate section 13. After this point, the distance between the conductors 8 in the intermediate section 13 remains constant and the conductors 8 run parallel to one another.
In order to avoid or to reduce a possible air gap between the shield 52 for a pair of conductors or the conductor shield 53 and the insulating part 9, the shield 52 for a pair of conductors or conductor shield 53 can be in the form of a unipartite potting compound which surrounds the conductors 8, as far as possible without intermediate spaces. As an alternative, the shield 52 for a pair of conductors or conductor shield 53 can also be produced as a turned, milled or cast part.
The shield 52 for a pair of conductors is electrically connected to the shield 51 for a pair of conductors by means of a conductive crimp sleeve 16. The crimp sleeve 16 is guided coaxially over the supporting sleeve 6 to this end. For the purpose of DC-coupling or electrically connecting the shield 51 for a pair of conductors of the cable 3 to the shield 17 for a pair of conductors of the connector 2, the shield 17 for a pair of conductors is placed over the shield 52 for a pair of conductors which is in turn connected to the shield 51 for a pair of conductors.
The conductors 8 are guided in associated guide channels 18 in the second section 14. The conductors 8 are at the distance Y from one another and are surrounded by an insulating part 19. The conductors 8 are electrically connected to associated internal conductor contact elements 20 within the guide channels 18. The electrical connection can be made, for example, by means of soldering or crimping.
The internal conductor contact elements 20 each have a socket-like recess 23 for receiving an associated contact pin 24 of a mating connector 25 at the connector-side end 22 of the connector 2.
As an alternative, the internal conductor contact elements 20 can also be realized as contact pins and can be inserted into associated socket-like contact elements of the mating connector 25 so as to protrude beyond the interface-side end 22 of the connector 2. The connector 2 can also be realized as a coupler which connects the cable 3 to a further cable.
For the purpose of axially fixing the internal conductor contact element 20 in the insulating part 19 of the connector 2, the said insulating part has a radially outwardly directed spring element 21 which is respectively supported on an end face of an annular slot in the guide channel 18 within the insulating part 19.
In
It is clear to a person skilled in the art that compensation of the impedance on account of the changing distance can also be performed in a region in which the distance between the conductors is constant, provided that this region is formed immediately adjacent to the region with the changing distance in the intermediate section.
The insulating part 19 extends along second section 14 and along the intermediate section 13, serves to insulate the conductors in this region and has a recess, which corresponds to the conductor shield 5272, in the intermediate section. Complex shapes, for example cylindrical shapes, or a recess slot, in which a shielding plate is inserted, are feasible here.
The insulating part 19 can be designed to make contact with the converging conductors 8.
On account of the increasing distance between the two conductors 8 in the intermediate section 13, the capacitance C12 between the two conductors 8 reduces. As a result, the impedance Zodd of the differential mode increases.
With regard to matching of the impedance Zodd of the differential mode between the individual sections, the impedance Zodd of the differential mode is also likewise “artificially increased” within the cable 3 in the first section 10. To this end, the distance d1 between the conductors 8 and the shield 51 for a pair of conductors, and therefore the capacitance C11 between the individual conductors 8 and the shield 51 for a pair of conductors, within the cable 3 is reduced.
The connector 1IX has a dielectric spacer 27 between the conductors 8. The connector fix has a shield element 5270 with a shield 5271 for a pair of conductors and a conductor shield 5272 in the intermediate section 13. The shield element can be of unipartite or multipartite design.
A cable 3 is not limited to one pair of conductors, but rather can also have a plurality of pairs of conductors.
According to
Said figure shows that the reflection factor S11 of the connector arrangement according to the invention initially undergoes a considerable impairment starting from a frequency f of approximately 7 GHz, while the reflection factor of a connector arrangement without shielding is already considerably impaired starting from a frequency of approximately 0.8 GHz and the reflection factor of a connector arrangement according to DE 20 2015 000 753 U1 is considerably impaired starting from a frequency of approximately 4 GHz.
The reflective pulse response of the connector arrangement according to the invention in the time range in which the received signal level value is converted into a corresponding impedance value Z is also considerably more severely damped than in a connector arrangement without shielding or in a connector arrangement according to DE 20 2015 000 753 U1.
The invention is not limited to the illustrated embodiments, refinements and subvariants. In particular, all combinations of the features respectively claimed in the individual patent claims, of the features respectively disclosed in the description and of the features respectively shown in the figures of the drawing are also covered by the invention, provided that they are technically expedient.
Although the present invention has been described above entirely on the basis of preferred exemplary embodiments, it is not limited to these, but rather may be modified in a variety of ways.
Number | Date | Country | Kind |
---|---|---|---|
16197325.0 | Nov 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/071872 | 8/31/2017 | WO | 00 |