The invention generally relates to an electrical connector assembly.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
An electrical connector assembly suitable for high current applications, e.g. greater than 200 amperes, is presented herein. The electrical connect assemblies forms a direct current path between one planar copper blade terminal in a first electrical connector and a second planar copper blade terminal in a second electrical connector. The terminals are held in place by a retainer portion of the first electrical connector and a normal force is applied to the terminals by a spring located between the retainer portion and the second blade terminal.
As shown in
Returning to
As shown in
As best shown in
The spring 126 is secured to the second side wall 120 by a flexible tang 146, best shown in
The spring 126 defines a cantilevered plate 154 that has a fixed end 156 attached to the second side wall 120 and a free end 158 extending into the gap 122 between the spring 126 and the connection end 112. The height of the retaining rails 150 inhibit over-deflection of the cantilevered plate 154 by the mating terminal. In an example embodiment of the spring 126 shown in
The illustrated example of the assembly 100 is a right angle or ninety degree connector assembly wherein the mating axis of the mating connector 106 is orthogonal to the longitudinal axis of the terminal portion 110 of the connector 102. In this embodiment, the end wall 124 extends longitudinally along a distal edge of the connection end 112. Other embodiments of the assembly shown in
In an alternative embodiment illustrated in
Without subscribing to any particular theory of operation, because the terminal portion 110 and the mating connector 106 are in direct physical and electrical contact, the majority of the current flowing through the assembly 100 will flow thought these two components, therefore the electrical conductivity of the retainer portion 116 and the spring 126 are not critical to the current carrying capability of the assembly 100. The material used for the retainer portion 116 and the spring 126 may be selected for their mechanical properties rather than their electrical properties, allowing the use of high temperature stainless steel materials or even high temperature polymer material that can provide sufficient normal contact force between the connector 102 and the mating connector 106. These materials may also have a lower cost than the copper-based material used to form the terminal portion 110 and the mating connector 106.
Accordingly, an electrical connector assembly is provided. The assembly provide the benefit of a direct current path between to copper blade terminals. The assembly reduces the copper material used compared to prior art designs, increases the cross sectional area of the terminals, and allows for use of lower cost materials for structural components of the assembly, such as the retainer portion and spring.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to configure a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely prototypical embodiments.
Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the following claims, along with the full scope of equivalents to which such claims are entitled.
As used herein, ‘one or more’ includes a function being performed by one element, a function being performed by more than one element, e.g., in a distributed fashion, several functions being performed by one element, several functions being performed by several elements, or any combination of the above.
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Additionally, while terms of ordinance or orientation may be used herein these elements should not be limited by these terms. All terms of ordinance or orientation, unless stated otherwise, are used for purposes distinguishing one element from another, and do not denote any particular order, order of operations, direction or orientation unless stated otherwise.
Number | Name | Date | Kind |
---|---|---|---|
5588884 | Rudoy | Dec 1996 | A |
5679034 | Hanazaki | Oct 1997 | A |
7766706 | Kawamura et al. | Aug 2010 | B2 |
7789720 | Zinn | Sep 2010 | B2 |
9142902 | Glick et al. | Sep 2015 | B2 |
9300069 | Morello et al. | Mar 2016 | B2 |
9537227 | Morello et al. | Jan 2017 | B1 |
9905950 | Marsh | Feb 2018 | B2 |
20020025732 | Hsieh | Feb 2002 | A1 |
20040040733 | Yuasa | Mar 2004 | A1 |
20070066152 | Mohs | Mar 2007 | A1 |
20070218736 | Takizawa | Sep 2007 | A1 |
20160285178 | Wimmer | Sep 2016 | A1 |
20170062955 | Marsh | Mar 2017 | A1 |
20190013609 | Kimura | Jan 2019 | A1 |