1. Field of the Invention
A bridge connector connects includes a pair of parallel bridge contacts that extend through contact openings contained in a pair of insulated housings for electrical engagement with bus bars mounted therein, respectively. A locking device is arranged in at least one of the housing chambers for automatic locking engagement with the associated bridge contact, thereby to retain the bridge contact in the housing chamber in engagement with the associated bus bar. A release member is mounted on the bridge member for displacement from a retracted position toward an operable extended position in which the release member unlocks the locking device from the bridge contact, thereby to permit removal of the bridge connector from the housings.
2. Description of the Related Art
It is well known in the prior art to connect a pair of bus bars contained in housings by a bridge connector having a pair of bridge contacts in engagement with the bus bars, respectively, which bridge contacts are joined by a transverse connecting portion. The housings are formed of electrical insulating material and may include electrical devices, such as panel boxes, power distribution circuits, and the like.
Generally, the contacts of the bridge connector are parallel and extend through contact openings contained in the housings for engagement with the bus bars contained therein, respectively. In order to securely retain the bridge contacts in the housing chambers in engagement with the bus bars, it has been proposed to provide automatic one-way locking devices in the form of leaf springs, for example, which leaf springs have leg portions that terminate in edges that dig into the outer periphery of the bridge contacts, whereby it is impossible to withdraw the contacts from the housing without destroying the bridge contact assembly. Thus, the direct plug-in technique of the known devices does not require any tool for assembling the bridge connector in a permanent manner. However, owing to the manner in which the leaf springs dig into the bridge contacts, the leaf springs must be disengaged from the bridge contacts by a release tool, such as a screwdriver or the like, thereby to permit removal of the bridge contact from the housing chamber in which the bus bar is mounted.
Naturally, such a disassembly procedure is difficult, awkward and inefficient. Furthermore, since the bridge contacts are relatively long and generally have the same length, the locking means for the two legs of the bridge connector must be disengaged simultaneously, so that the bridge connector may be removed in a steady, even manner. This simultaneous unlocking procedure presents a major problem for disassembly of the contacts, thereby further increasing the cost and difficulty of removing the bridge connector from the bus bar housings.
To solve this problem, it is proposed by the present invention to provide on the bridge connector body a permanently mounted release member that is displaceable from an inoperable retracted position toward an operable extended position in which it releases the locking member from the associated bridge contact.
Accordingly, a primary object of the present invention is to provide a plug-in bridge connector for connecting a pair of bus bars by a plug-in bridge connector having bridge contacts that are automatically locked in the bus bar housings, together with release means mounted on the bridge connector body for displacement from an inoperable retracted position toward an operable extended position, thereby to release the locking means from the bridge contact, whereby the bridge connector may be removed from the bus bar housings.
According to a more specific object of the invention, the bridge connector includes a bridge body containing a conductor having a pair of bridge contacts that extend from one side of the bridge body into the bus bar housing chambers via contact openings for engagement with the bus bars mounted therein, respectively. The release means moveably mounted on the bridge body include a release member having a pair of rigid release leg portions that extend through release openings contained in the housings for disengaging the automatic locking means associated with the bridge contacts, respectively. In the preferred embodiment, the locking means comprise one-way leaf springs that automatically dig into the bridge contacts to retain the same within the bus bar chambers, respectively. The release means include a pair of rigid release legs that engage leg portions of the leaf springs to disengage the same from the associated bridge contacts, respectively.
The present invention makes it possible to automatically effect simultaneous locked bridging contact with the bus bars without the requirement of any separate disconnecting tool, such as a screwdriver. Since the disconnect member is carried by and permanently retained on the bridge body, the disconnect device will not become separated from the bridge body and inadvertently lost.
According to another object of the invention, the locking devices comprise inverted U-shaped leaf springs including first leg portions that are fastened to the bus bar chamber walls, and second leg portions that are biased toward engagement with the bridge contacts, respectively. The second leg portions terminate in sharp edges that dig into the outer surfaces of the bridge contacts, thereby to retain the same against removal from the bus bar housing chambers. In order to assist in disengaging the second leaf spring leg portions from the bridge contacts, the release members are provided at their ends with inclined ramp surfaces that come into sliding engagement with the leaf spring second leg portions.
According to a further object of the invention, the release means include stop means that prevent removal of the release means from the bridge connector body.
Other objects and advantages of the invention will become apparent from a study of the following specification when viewed in the light of the accompanying drawings, in which:
Referring first more particularly to
Referring now to
Referring now to
Referring now to
As shown in
While in accordance with the provisions of the Patent Statutes the preferred forms and embodiments of the invention have been illustrated and described, it will be apparent to those skilled in the art that various changes may be made without deviating from the inventive concepts set forth above.
Number | Date | Country | Kind |
---|---|---|---|
20 2004 018 757 | Dec 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3345603 | Cohen | Oct 1967 | A |
3431536 | Olson | Mar 1969 | A |
4978315 | Edgley et al. | Dec 1990 | A |
6244904 | Fabian et al. | Jun 2001 | B1 |
6250950 | Pallai | Jun 2001 | B1 |
7182631 | Kollmann | Feb 2007 | B2 |
20060266196 | Hanning et al. | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070082551 A1 | Apr 2007 | US |