This application claims the benefit of the filing date under 35 U.S.C. § 119(a)-(d) of French Patent Application No. 2105082, filed on May 14, 2021.
The present invention relates to an electrical connector and, more particularly, to an electrical connector having a connector position assurance element.
It is known, in particular in the field of electrical connections for the automobile industry, to use connectors comprising compressive members. A compressive member is usually one traditional spring of the helical type arranged in the connector and makes it possible to push back a mating electrical connector during an attempt to couple the electrical connector to the mating electrical connector, as long as the force applied on the electrical connector and/or the mating electrical connector is not sufficient to couple them correctly. In such systems, it is known that the compressive member is relaxed in the electrical connector in its delivery position, i.e., before any attempt at connecting it to a mating connector, and compressed in its axial direction during a coupling attempt with the mating electrical connector. The compression of the compressive member opposes the coupling direction of the mating electrical connectors. Thus, as long as the force exerted to couple the two mating electrical connectors is not sufficient to complete the coupling, i.e., to allow the locking of the two mating electrical connectors with each other, the force created by the compression of the compressive member makes it possible to push the mating electrical connector back in a direction opposite the coupling direction, thereby avoiding the possibility of an incorrect connection.
In the connectors known from the state of the art, the compression of the compression member must therefore be high enough to allow good ejection of the mating electrical connectors if they are not completely locked with each other. In order to obtain the desired functionality, it is known that the compression member uses at least one spring.
It is also known from the state of the art to use connector position assurance (CPA) elements, making it possible to monitor and ensure proper coupling of an electrical connector to a mating connector. In the automobile industry, it is in particular known to use CPA elements on the one hand to make sure that two mating electrical connectors are correctly coupled and locked, and on the other hand to strengthen the locking of the mating electrical connectors through additional locking, one purpose of which is to avoid unwanted disconnection of the mating electrical connectors for example due to the many impacts and strong vibrations regularly experienced by the connecting elements of motor vehicles.
The safety restraint systems commonly used in motor vehicle seat belts or air bags comprise pyrotechnic devices that can activate the locking of a belt or the inflation of an airbag based on impact or vibration information received by sensors of the vehicle. It is also known that the electrical cables connect a control unit of a sensor to a corresponding pyrotechnic device, or squib, end in an electrical connector, which is generally connected to a mating electrical connector receptacle, or squib carrier.
The airbag squib systems of motor vehicles use standardized squib connectors, the standard for which requires a high degree of compactness and therefore small dimensions relative to connectors used for other systems or electric elements of the vehicle. The standard imposes dimensions that are incompatible with the space necessary for the travel of locking springs like those used in the known spring-lock connectors of the state of the art.
Document WO 2015/088636 A1 in particular discloses a self-rejecting automotive harness connector comprising one helical compression spring arranged in the housing of the connector between a cover and a connector position assurance (CPA) element. The arrangement of the helical compression spring as known from WO 2015/088636 A1, however, does not allow distributing the compressive force uniformly with respect to the housing. Moreover, an involuntary contact between the helical compression spring and the electrically conductive terminal is not well prevented. The design according to WO 2015/088636 A1 also requires that the helical compression spring comprises a sufficient amount of spires for sustaining the mechanical stress resulting from the mating operations. Thereby, the helical compression spring as known from WO 2015/088636 A1 has to be provided with a minimum length, which does not allow for further size reduction of the housing.
An electrical connector for connecting with a mating electrical connector in a mating direction includes an electrically conductive terminal having an electrical contact, a housing having a plug-in portion insertable into the mating electrical connector along the mating direction, the plug-in portion having a receptacle receiving the electrical contact, a compressive member arranged within the housing and compressed along the mating direction, and a connector position assurance element (CPA) slidable from an unlocked position to a locked position along the mating direction. The locked position allows the electrical connector to be locked to the mating connector when the electrical connector is connected to the mating connector. A central axis of the compressive member is aligned with a central axis of the plug-in portion in the mating direction.
The invention will now be described by way of example with reference to the accompanying Figures, of which:
The accompanying drawings are merely for the purpose of illustrating examples of how the invention can be made and used, and are not to be construed as limiting the invention to only the illustrated and described embodiments. Furthermore, several aspects of the embodiments may form—individually or in different combinations—solutions according to the present invention. The following described embodiments thus can be considered either alone or in an arbitrary combination thereof. Further features and advantages will become apparent from the following more particular description of the various embodiments of the invention, as illustrated in the accompanying drawings.
The electrical connector 10 corresponds to the assembly of several elements shown in
The housing 12 of the electrical connector 10 comprises two main portions 22, 24, as shown in
The plug-in portion 22 is the portion of the housing 12 insertable into the mating electrical connector 100 along the mating direction D. The plug-in portion 22 is thus of suitable geometry for being plugged in the mating electrical connector 100. In the example illustrated in
The plug-in portion 22 has a central axis C1. The central axis C1 passes through the center of gravity of the plug-in portion 22. The central axis C1 is parallel to the mating direction D. In the case wherein the plug-in portion 22 is substantially cylindrical, as illustrated in
The plug-in portion 22 comprises two receptacles 26 configured for receiving electrical contacts 28 of the electrically conductive terminals 14. The number of receptacles 26 is adapted to the number of electrical contacts 28. The receptacles 26 are of suitable geometry for accommodating the electrical contacts 28. In particular, each receptacle 26 respectively forms a tunnel 30 within the plug-in portion 22. A central longitudinal axis C2 of each tunnel 30 (i.e. of each receptacle 26) is parallel to the central axis C1 of the plug-in portion 22. The tunnels 30 are hollow cylindrical openings 30 with complementary dimensions (in particular in diameter and length) to the electrical contacts 28.
Provided at an external circumference 32 of the plug-in portion 22, said plug-in portion 22 comprises two locking lances 34 (only one is visible in the view of
As mentioned above, the housing 12 further comprises a receiving portion 24. In the example illustrated by
In another embodiment, the electrically conductive terminals 14 are not provided with a ferrite bead 40.
The electrically conductive terminals 14 are terminated by the electrical contacts 28. The electrically conductive terminals 14 pass through the ferrite bead 40. In the ferrite bead 40, as shown in
As shown in
A second bend of the electrically conductive terminals 14 forms a right angle A2 between two sections 14B, 14C of the electrically conductive terminal 14 in the first region 36, as shown in
A third bend of the electrically conductive terminals 14 forms a right angle A3 between the section 14C of the electrically conductive terminal 14 and the electrical contact 28 at a junction between the first region 36 and the plug-in portion 22, as shown in
Hence, the second bend forming the right angle A2 is disposed between the first bend (A1) and the third bend (A3).
The electrically conductive terminals 14 thus comprises three bent sections 14A, 14B and 14C. The first section 14A is perpendicular to the second section 14B, that is itself perpendicular to the third section 14C. The first section 14A is parallel to the third section 14C. As further explained thereafter, the bent design of the electrically conductive terminals 14 allow providing shorter electrical contacts 28. Hence, raw material can be saved for manufacturing the electrically conductive terminals 14 used within the electrical connector 10 according to the present invention.
The plug-in portion 22 extends substantially perpendicularly from the receiving portion 24 at the first region 36. The receptacles 28 of the plug-in portion 22 thus correspond to tunnels 30 leading to the first region 36 of the receiving portion 24. Hence, the electrical contacts 28 can be accommodated into the receptacles 38 of the plug-in portion 22 via the first region 36 of the receiving portion 24 along the mating direction D, as shown by the exploded view of
The CPA 16 is also configured to be accommodated in the plug-in portion 22 via the first region 36 of the receiving portion 24 along the mating direction D. To this end, the plug-in portion 22 comprises longitudinal openings 48, 50, shown in
The CPA 16 is slidable from an unlocked position to a locked position along the mating direction D. The locked position of the CPA 16 allows the electrical connector 10 to be locked to the mating connector 100 when the connectors 10, 100 are properly mated together.
The CPA 16 according to the present invention, as shown in
As shown in
As mentioned above, the head 52 of the CPA 16 is essentially flat. It allows providing a flat surface 61A onto which the compressive member 18 can be compressed, thereby facilitating a homogeneous distribution of compressive forces thanks to the flat geometry of the CPA head 52. Hence, the CPA 16 is further rendered more robust and stable.
Under the action of a force applied to the CPA 16 by the compressive member 18, the CPA 16 can be slid in the mating direction D. In particular, the CPA 16 can be slid from the unlocked position to the locked position, thereby providing the function of a CPA 16 to the electrical connector 10.
In the first embodiment, the head 52 of the CPA 16 comprises a circular recess 60 on the surface 61A (or side 61A) opposite to the side 61B from which extend the latching arms 54 and the tabs 58. The circular recess 60 has a diameter L2. The diameter L2 of the circular recess 60 is adapted to a diameter L3 of the compressive member 18.
In another embodiment, instead of a circular recess 60, the head 52 is provided with a protuberance having an essentially cylindrical or conical shape having a base of diameter L2.
When the compressive member 18 is a cylindrical compression spring 62, like in the first embodiment shown in
When the compressive member 18 is a conical compression spring, like in a second embodiment of the present invention (shown in
The circular recess 60 (or protuberance) of the CPA 16 provides a retention device for holding and stabilizing the compressive member 18. Indeed, the circular recess 60 forms a circular border that can enclose the portion of the compressive member 18 located in the circular recess 60. A good retention of the compression member 18 is particularly needed for automotive applications, wherein the electrical connector 10 can face chocks and vibrations.
The head 52 of the CPA 16 further comprises two opposite end-portions 64, distinct from the circular recess 60, that provides handling portions for grasping the CPA 16 and/or a visual indicator of the CPA 16 position to an operator. As shown in
The compressive member 18 has a central axis C3. As indicated above, in the first embodiment shown in
The electrical connector 10 further comprises the cover 20. The cover 20 has a shape substantially complementary to the housing 12 and can engage the housing 12 by a snap-fit connection. Thereby, a rigid and unitary connector 10 enclosing the electrically conductive terminals 14 is obtained. The electrical contacts 28, the electrically conductive terminals 14 and the ferrite bead 40 are thus enclosed within the electrical connector 10 by the cover 20.
The cover 20 comprises two openings 66 (only one is visible in
The main face 69 is substantially flat. As shown in
Still in reference with
As shown in
As shown in
As shown in
According to the present invention, the compressive member 18 is arranged within the first region 36 of the receiving portion 24 of the housing 12 such that the central axis C3 of the compressive member 18 is essentially aligned with a central axis C1 of the plug-in portion 22. The alignment of the axis C1, C3 is further illustrated by the top view of
The alignment of the axis C1, C3 allows improving the force distribution applied on the housing 12 during the mating operation along the mating direction D. Indeed, during the compression of the compressive member 18, which exerts a reaction force along its central axis C3, parallel to the mating direction D, the specific arrangement of the compressive member 18 within the electrical connector 10 homogeneously distributes the applied forces with respect to the plug-in portion 22 of the housing 12. A uniform strain is thus applied on the plug-in portion 22 of the housing 12. Thereby, the electrical connector 10 according to the present invention is rendered more stable, especially during mating operations. Hence a more resistant and more reliable electrical connector 10 than the connectors known from the prior art is provided.
Furthermore, the design and the arrangement of the CPA 16 according to the present invention helps preventing contact (and thus short circuits) between the electrically conductive terminals 14 and the compressive member 18. This is because the essentially flat head 52 of the CPA 16 is dimensioned for covering the plug-in portion 22, so as to integrally cover the receptacles 26 wherein the electrical contacts 28 are inserted thereinto. In particular, the essentially flat head 52 of the CPA 16 has a width H4 substantially equivalent to the diameter L1 of the plug-in portion 22.
As shown in
Moreover, as the CPA 16 integrally covers the at least one receptacle 26, the CPA 16 also acts as a lid for the receptacle 26, thereby preventing any direct access to the receptacle 26 and the electrical contact 28 arranged therein.
Further, as the dimension of the head 52 of the CPA 16 according to the present invention allows providing a CPA 16 with a large surface 61A, i.e. essentially as large as the diameter L1 of the plug-in portion 22, a compressive member 18 with a larger diameter L3 than in the state of the art can be used. Hence, it allows using a compressive member 18, larger than the ones used in the state of art, and with a smaller height (i.e. the length along the compressive axis) than the ones used in the state of art, for an equivalent compressive force. As a result, because the height of the compressive member 18 can be reduced, the height H1 of the receiving portion 24 can be reduced, thereby advantageously providing a more compact housing 12.
Moreover, the multi-bent sections 14A, 14B, 14C at right angles A1, A2, A3 allow providing electrically conductive terminals 14 with shorter electrical contacts 28 than in the state of the art. It therefore allows using less raw material for the electrically conductive terminals 14 and their electrical contacts 28.
In a second embodiment, as illustrated in
The conical compression spring 80 has one first free-end 82 and a second free-end 84. The coil at the first free-end 82 of the conical compression spring 80 has a diameter L5. The coil at the second free-end 84 of the conical compression spring 80 has a diameter L6. The diameter L6 is greater than the diameter L5 because the compression spring 80 is conical. The first free-end 82 is arranged around the protuberance 74 and thus hold to the cover 20. In particular, the first free-end 82 can be hold to the cover 20 by friction fit. The second free-end 84 is arranged within the circular recess 60 of the head 52 of the CPA 16.
The diameter of the successive coils of the conical compression spring 80 thus increases in the mating direction D.
In another embodiment, the diameter of the successive coils of the conical compression spring 80 can increase in a direction opposite to the mating direction D. The conical compression spring 80 provides a compact and space-saving compressive member 18 as the spring coils fit into each other under compression along the mating direction D.
In another embodiment, the compressive member 18 is a multi-waves compression spring or an elastomer spring. Multi-waves compression springs provide a further compact and space-saving compressive member. In particular, the height of such compressive member can be reduced, in comparison with a cylindrical or conical compression spring, for the same compression force. Elastomer springs allow providing an electrically insulating compressive member.
In another embodiment, the housing 12 comprises at least two compressive members 18 arranged such that the respective central axis C3 of each compressive member 18 is essentially aligned with the central axis C1 of the plug-in portion 22 of the housing 12 in the mating direction D. Hence, an alternative arrangement can be obtained, providing an even more robust and thus reliable electrical connector 10 because of the plurality of compressive members 18.
Although the embodiments have been described in relation to particular examples, the invention is not limited and numerous alterations to the disclosed embodiments can be made without departing from the scope of this invention. The various embodiments and examples include individual features can be freely combined with each other to obtain further embodiments or examples according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
2105082 | May 2021 | FR | national |