This application claims the benefit of the filing date under 35 U.S.C. ยง 119(a)-(d) of European Patent Application No. 20315178.2, filed on Apr. 16, 2020.
The present invention relates to an electrical connector and, more particularly, to an electrical connector having a securing tab.
An electrical connector can comprise a housing having a receptacle, the receptacle being open in a connection direction arranged essentially parallel to a longitudinal axis for receiving a complementary connector. The electrical connector can have a primary locking sleeve on the housing that is held movable relative to the housing between a locked position for securing the electrical connector to the complementary connector and a release position for connecting or disconnecting the electrical connector and the complementary connector.
Such electrical connectors are at present utilized for various applications, for example for the connection of two electronic devices, e.g. in a cabin of an aircraft. In such instances, however, the electrical connector may be accessible to laypeople, such as passengers, who may easily disengage the connection between the electrical connector and the complementary connector by moving the primary locking sleeve to the release position. An electrical connector is needed which further secures the connection of the electrical connector and the complementary connector and prevents unintentional disconnection.
An electrical connector includes a housing, a primary locking sleeve disposed on the housing, and a securing tab. The housing has a receptacle open in a connection direction essentially parallel to a longitudinal axis, the receptacle receiving a complementary connector. The primary locking sleeve is movable relative to the housing between a locked position securing the electrical connector and the complementary connector and a release position for connecting and/or disconnecting the electrical connector and the complementary connector. A gap having a gap width is disposed between the housing and the primary locking sleeve at least in the locked position. The gap width decreases from the locked position to the release position. The securing tab is insertable at least partially into the gap to an inserted state to secure the primary locking sleeve in the locked position.
The invention will now be described by way of example with reference to the accompanying Figures, of which:
In the following, the electrical connector according to the invention is explained in greater detail with reference to the accompanying drawings, in which exemplary embodiments are shown. In the figures, the same reference numerals are used for elements which correspond to one another in terms of their function and/or structure. According to the description of the various aspects and embodiments, elements shown in the drawings can be omitted if the technical effects of these elements are not needed for a particular application, and vice versa: i.e. elements that are not shown or described with reference to the figures but are described herein can be added if the technical effect of those particular elements is advantageous in a specific application.
First, an exemplary embodiment of an electrical connector 1 according to the invention will be described with reference to
The electrical connector 1 comprises a housing 2 having a receptacle 4, the receptacle 4 being open in a connection direction S arranged essentially parallel to a longitudinal axis L for receiving a complementary connector 6 (see
At least in the locked position 10, as shown in
The complementary connector 6 may, for example, be connected to an electronic device integrated into an aircraft structure. The electrical connector 1 may, for example, be connected to a further connector adapted to connect two pieces of electronic equipment. Therefore, the electrical connector 1 may be an interface adapted to connect two pieces of electronic equipment. The electrical connector 1 may be arranged inside an aircraft cabin, where laypeople, such as passengers, may access the electrical connector 1. Thus, the electrical connector 1 is further secured in the locked position 10 by the securing tab 16 in order to prevent accidental disengagement between the electrical connector 1 and the complementary connector 6.
The housing 2 may be formed, for example, of molded plastic or metal and may comprise an upper wall 20, a lower wall 22 and two lateral sidewalls 24 connecting the upper wall 20 to the lower wall 22 at opposing lateral ends, such that the walls 20-24 circumferentially enclose the receptacle 4, as shown in
As shown in
Each side portion 28 may comprise a guide rail 30 arranged on an inner side of the side portion 28 facing the opposite side portion 28, as shown in
The primary locking sleeve 8 may comprise a limit stop arranged on the opposite side of the flange 32 which protrudes radially inward and which may abut the flange 32 in the locked position 10, further limiting the degree of movement between the housing 1 and the primary locking sleeve 8 along the longitudinal axis L. The limit stop may partially form the guide rail 30.
The primary locking sleeve 8 may be movable along the longitudinal axis L relative to the housing 2. In the locked position 10 the primary locking sleeve 8 may be placed further away from a connector interface at which the receptacle 4 is opened compared to the release position 12, in which the primary locking sleeve 8 may be displaced towards the connector interface side. In other words, the primary locking sleeve may be placed further towards the complementary connector 6 in the release position 12 than in the locked position 10.
Additionally, the primary locking sleeve 8 may be adapted to be moved in a direction essentially perpendicular to the longitudinal axis L. In an embodiment, the primary locking sleeve 8 may be actuated by pressing the central portion 26 towards the housing 2. Consequently, the force needed to move the primary locking sleeve 8 from the locked position 10 to the release position 12 may be easily applied by the technician, increasing the user-friendliness. The movement essentially perpendicular to the longitudinal axis L and the movement essentially parallel to the longitudinal axis L of the primary locking sleeve 8 relative to the housing 2 may be coupled to one another. In an embodiment, the movement essentially perpendicular to the longitudinal axis may be translated to the movement essentially parallel to the longitudinal axis L, when moving from the locked position to the release position 12. For this, the housing 2, may comprise a beveled guiding ramp 34 shown in
In an embodiment, the primary locking sleeve 8 is pre-stressed towards the locked position 10, such that upon release of the actuation force, the primary locking sleeve 8 may automatically revert to the locked position 10. Consequently, once the latching mechanism of the primary locking sleeve 8 engages the complementary formed latching mechanism of the complementary connector 6 and the actuating force is released, the complementary connector 6 may be automatically pulled towards the receptacle 4. Therefore, a sufficient compression of an interfacial sealing between the connectors 1, 6 in a connected state may be achieved.
In order to create a biasing force for pre-stressing the primary locking sleeve 8 to the locked position 10, biasing springs 36, for example a helicoid biasing spring 38, may be provided at a bottom end of each side portion 28, as shown in
Each biasing spring 36 may be compressed upon movement of the primary locking sleeve 8 from the locked position 10 to the release position 12, whereby the helicoid biasing spring 38 may produce a biasing force acting essentially perpendicular to the longitudinal axis L, and the biasing spring blades 40 may produce a biasing force acting essentially parallel to the longitudinal axis L.
In order to allow an easy insertion of the securing tab 16 into the gap 14, the gap 14 may be opened in a direction essentially perpendicular to the longitudinal axis L, as shown in
Two gaps 14 may be provided, the two gaps 14 being arranged on opposing lateral sides between the housing 2 and the primary locking sleeve 8. Therefore, the arrangement between the housing 2 and the primary locking sleeve 8 may be symmetrical, allowing a continuous flow of movement between the primary locking sleeve 8 and the housing 2 without the risk of jamming due to a malposition of the primary locking sleeve 8 and the housing 2.
The securing tab 16, as shown in
In an embodiment, the securing tab 16 may be formed as a monolithic component, e.g. by injection molding. Therefore, a cost-efficient production of the securing tab 16, particularly in large amounts, may be achieved. The primary locking sleeve 8 and the securing tab 16 may be separate parts. The securing tab 16 may, for example, be an accessory component, which may be added to the housing 2 and the primary locking sleeve 8. However, the securing tab 16 may also be pre-mounted to the housing 2 and/or the primary locking sleeve 8, in order to prevent unintentional connection of the complementary connector 6 and the electrical connector 1.
A width of the securing tab 16, particularly a width of the protrusion 56, may be adapted to the width X of the gap 14 in the locked position 10, as shown in
In the inserted state 18 shown in
In order to not interfere with the biasing force of the biasing spring blade 40, the protrusion 56 and the arch section 50 of the biasing spring blade 40 may be arranged staggered to one another in a direction essentially perpendicular to the longitudinal axis L. The arch section 50 may for example be arranged laterally offset from the protrusion 56 in an embodiment. In an embodiment, however, the arch section 50 may be arranged deeper inside the gap 14 than the end of the protrusion 56 in the inserted state 18.
As shown in
The secondary securing element 60 may, for example, be a tie wrap 62 as shown in
With reference to
The securing tab 16 in the embodiment shown in
The notch 58 and the protrusion 56 may be arranged staggered to one another along the longitudinal axis L. The notch 58 may thus be arranged at a portion of the electrical connector 1 having a lower radial size than its immediate surroundings along the longitudinal axis L, thus ensuring that the secondary securing element 60 may be wrapped firmly around the electrical connector 1 without slipping and/or tilting along the longitudinal axis L.
The handle 54 may comprise a blocking protrusion 68, shown in
Number | Date | Country | Kind |
---|---|---|---|
20315178 | Apr 2020 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
9350116 | Morello | May 2016 | B1 |
10122117 | Miller | Nov 2018 | B2 |
20090029584 | Sami | Jan 2009 | A1 |
20140235085 | Su et al. | Aug 2014 | A1 |
20160064862 | Nagasaki et al. | Mar 2016 | A1 |
20170271815 | Lane et al. | Sep 2017 | A1 |
20190312386 | Houry | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
1207591 | May 2002 | EP |
2662937 | Nov 2013 | EP |
2783450 | Oct 2014 | EP |
Entry |
---|
Extended European Search Report, dated Sep. 15, 2020, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210328380 A1 | Oct 2021 | US |