The present disclosure relates to an electrical connector between a cable and a printed circuit board, and more particularly to an electrical connector for FFC/FPC used to electrically connect an FFC/FPC to a printed circuit board.
In general, to stably receive an FPC board or FFC (referred to as an FPC/FFC connector), a conventional electrical connector includes a lifting type cover that works as an actuator, which is usually a cam and disposed with H-shaped terminals. The FFC/FPC is fixedly clamped by the terminals. In addition, some lifting type covers press against the terminals directly so that the terminals are able to fixedly clamp the FFC/FPC. This is to prevent the FFC/FPC from detaching from the electrical connector accidentally. This kind of connector is also referred to as a flip-lock type (rotatory cover) connector. The flip-lock type connector can be further classified as a forward-rotary type connector, in which the cover rotates towards the FFC/FPC, or a rearward-rotary type connector, in which the cover rotates rearwardly.
As sizes of electronic products in general have decreased, electrical connectors have also become smaller and thinner. However, smaller terminals or covers of the electrical connector are often less sturdy. This may result in reduced structural stress, an insufficient amount of pressure against the terminals by the covers, or an insufficient clamping force of the terminals. As a result, the terminals may not be able to fixedly clamp the FFC/FPC, and a poor connection between the terminals and the FFC/FPC may even result in an open-circuit.
Furthermore, the cover of the flip-lock type connector rotates towards the FFC/FPC to cover the FFC/FPC. Therefore, a lifting direction of the cover is the same as an upward pulling direction of the FFC/FPC. If an upward force component occurs during an assembling process of the FFC/FPC, the cover may be lifted and the FFC/FPC may be detached from the electrical connector.
In response to the above-referenced technical inadequacies, the present disclosure provides an electrical connector for a flexible flat cable, which can increase a retaining force for an FFC/FPC, so as to prevent the FFC/FPC from accidentally detaching from the electrical connector.
In response to the above-referenced technical inadequacies, the present disclosure further provides a flexible flat cable connector, which can provide the FFC/FPC a function of anti-electromagnetic interference.
In one aspect, the present disclosure provides a flexible flat cable connector for receiving an FFC/FPC. Two sides of the FFC/FPC each have a fixing portion respectively. The electrical connector includes an insulating housing, a plurality of conductive terminals, a pair of retaining pins, and a metal cover. The insulating housing includes a main body and a pair of shoulder parts. The pair of shoulder parts are arranged at two sides of the main body. A plurality of terminal slots are formed in the main body. A guiding bump and a pre-pressing board are respectively formed on the pair of shoulder parts. An oblique-entry space is formed between the guiding bump and the pre-pressing board. The conductive terminals are respectively received in the terminal slots. The pair of retaining pins are respectively fixed in the pair of shoulder parts, and an end of each of the retaining pins are exposed from a bottom of the insulating housing. The metal cover is slidably disposed on a top surface of the insulating housing. The metal cover includes a top pressing plate and a pair of side sliding rails. The pair of side sliding rails are respectively connected to two sides of the top pressing plate. The pair of side sliding rails are slidably mounted on the pair of shoulder parts respectively, and a front end of the top pressing plate forms a pressing rib. The pressing rib is protruded toward the insulating housing. The metal cover is movable between an initial position and a pressed position. When the FFC/FPC is inserted in the electrical connector for FFC/FPC, the fixing portions of the FFC/FPC are received in the oblique-entry space, and the pre-pressing board is pressed against a top surface of the FFC/FPC. When the metal cover is moved to the pressed position, the metal cover contacts with the pair of retaining pins and the pressing rib of the metal cover presses the FFC/FPC to contact with the conductive terminals.
Therefore, the present disclosure has advantages as follows. The present disclosure provides the electrical connector for FFC/FPC having the metal cover which can be moved in a horizontal sliding manner Through the horizontal sliding metal cover, the cover directly presses and holds the FFC/FPC without other actuating mechanisms and related terminals, so that the terminals can be simplified and an overall height and size can be reduced. In addition, the guiding bump and the oblique-entry space of the insulating housing can reduce an occurrence of displacement of the FFC/FPC. Moreover, as a result of the cover that can be moved in a horizontal sliding manner directly pressing and holding the FFC/FPC, the FFC/FPC can be stably fixed and an occurrence of displacement of the FFC/FPC can be reduced. Furthermore, the metal cover covers the FFC/FPC and contacts the retaining pins, so as to form a complete circuitry loop with the printed circuit board, which can avoid an electromagnetic interference.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The present disclosure will become more fully understood from the following detailed description and accompanying drawings.
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
Reference is made to
The insulating housing 10 includes a main body 12 and a pair of shoulder parts 14. The pair of shoulder parts 14 are integrally connected to two sides of the main body 12, respectively. The main body 12 has a plurality of terminal slots 120 formed therein. The terminal slot 120 passes through the main body 12 along a longitudinal direction of the FFC/FPC C. The pair of shoulder parts 14 respectively has a guiding bump 146 and a pre-pressing board 147. The guiding bump 146 is formed adjacent to the main body 12. The guiding bump 146 and the pre-pressing board 147 are opposite to each other along the longitudinal direction of the FFC/FPC C. An oblique-entry space 140 is formed between the guiding bump 146 and the pre-pressing board 147. The oblique-entry space 140 has an upward opening facing towards the main body 12. The guiding bump 146 has a guiding ramp 1462, and the pre-pressing board 147 is formed facing towards the guiding ramp 1462.
The insulating housing 10 further includes two stop protrusions 143 which are respectively formed on two outer lateral sides of the pair of shoulder parts 14. The metal cover 30 further includes two positioning knobs 3443 which are respectively formed on a pair of side sliding rails 34. The positioning knob 3443 is formed facing towards the insulating housing 10, and is able to slide to a front area or a rear area of the stop protrusion 143 that respectively corresponds to a pressed position and an initial position of the metal cover 30.
In detail, the main body 12 of the insulating housing 10 can further be divided into a front portion 121 and a rear portion 122. The rear portion 122 is connected to a rear side of the front portion 121. A height of the rear portion 122 is higher than a height of the front portion 121, so as to form a height difference for receiving the FFC/FPC C.
The conductive terminals 20 are respectively received in the terminal slots 120. In this embodiment, each conductive terminal 20 includes a soldering portion 21, an interfering portion 22 and a contacting portion 23. The soldering portion 21 is exposed from a rear end of the insulating housing 10, and can be soldered to a printed circuit board P (as shown in
In this embodiment, the pair of retaining pins 40 are respectively received in a pair of lateral-insertion slits 141. Each end of the retaining pins 40 is exposed from the bottom surface of the insulating housing 10. In detail, each retaining pin 40 of this embodiment includes a top portion 41 and a leg portion 42. The leg portion 42 extends downward from a middle portion to the bottom edge of the top portion 41, and is substantially T-shaped. The leg portion 42 is exposed from the bottom surface of the insulating housing 10, and soldered to the printed circuit board P. Therefore, the electrical connector 1 for FFC/FPC can be firmly fixed, and is able to electrically connect a ground circuit of the printed circuit board P. The top portion 41 of the retaining pin 40 is exposed from the top surface of the insulating housing 10, and is able to contact with the metal cover 30, so that the metal cover 30 can be grounded. In this embodiment, to fix the pair of retaining pins 40, each of the shoulder parts 14 of the insulating housing 10 has a lateral-insertion slit 141, and the lateral-insertion slit 141 is formed at an outer side of the guiding bump 146. The pair of retaining pins 40 is respectively received in the pair of lateral-insertion slits 141.
In this embodiment, the metal cover 30 can be slidably disposed on the top surface of the insulating housing 10. The metal cover 30 includes a top pressing plate 32 and the pair of side sliding rails 34. The pair of side sliding rails 34 are connected to two sides of the top pressing plate 32 respectively. The pair of side sliding rails 34 are slidably disposed on the pair of shoulder parts 14 of the insulating housing 10 respectively. A front end of the top pressing plate 32 forms a pressing rib 3211, and the pressing rib 3211 faces the insulating housing 10. In addition, the metal cover 30 further has a front guiding portion 321 which is formed obliquely and extends from a front edge of the top pressing plate 32 upwardly. The top pressing plate 32 has a holding portion 322 extended upwardly from a rear edge thereof. The front guiding portion 321 can guide the FFC/FPC C, and the holding portion 322 is for a user to push the metal cover 30 forward easily.
The metal cover 30 is movable between an initial position (as shown in
Reference is made to
Steps of assembling the FFC/FPC C to the electrical connector 1 according to the present disclosure are introduced as follows. An initial step of guiding the FFC/FPC C is as shown in
As shown in
Reference is made to
Reference is made to
In summary, when the FFC/FPC C is inserted into the electrical connector 1 of the present disclosure, the fixing portion C1 of the FFC/FPC C is blocked in the oblique-entry space 140 by the guiding bump 146, and the pre-pressing board 147 presses the front end of the FFC/FPC C. When the metal cover 30 is moved to the pressed position, the metal cover 30 contacts the pair of retaining pins 40, and the pressing rib 3211 of the metal cover 30 presses against the FFC/FPC C so as to electrically connect the conductive terminals 20. With the metal cover 30, the electrical connector 1 for FFC/FPC can reduce an overall height thereof. In addition, the guiding bump 146 and the oblique-entry space 140 of the insulating housing 10 reduces the occurrence of displacement of the FFC/FPC C, and cooperates with the sliding manner of the metal cover 30, so that the FFC/FPC can be stably fixed and an occurrence of displacement of the FFC/FPC can be reduced.
Reference is made to
To match with the retaining pin 50, the shoulder part 14a of the insulating housing 10a has a different structure. The pair of shoulder parts 14a respectively has a lateral-insertion slit 141a connected to a front end thereof, so as to receive the top arm 51 of the retaining pin 50. The top arm 51 has an interfering portion 512 so as to be fixed in the lateral-insertion slit 141a. This embodiment further includes a front stopper 148. The front stopper 148 protrudes from the top surface of the shoulder part 14a, so as to block the metal cover 30a. The lateral-insertion slit 141a is arranged at an outer side of the guiding bump 146, and passes through the front stopper 148. The shoulder part 14a has a side retaining slot 149 formed on one side thereof, so as to receive the free end 531 of the retaining pin 50. As shown in
Each side wall of the pair of side sliding rails 34a of the metal cover 30a includes a front positioning opening 3445, and a rear positioning recess 3446. The lateral retaining arm 53 is movable between the front positioning opening 3445 and the rear positioning recess 3446 of the side sliding rail 34a, so that the lateral retaining arm 53 can continuously contact the side sliding rail 34a of the metal cover 30a stably to form a shielding environment that is completely stable. In addition, the rear positioning recess 3446 of this embodiment is formed by punching the side sliding rail 34a outward to form a semi-circular opening, so that a gap is formed. The lateral retaining arm 53 thus can be rebounded with some voice or slight vibration, and the user can know that the metal cover 30a has been moved to a predetermined position during operation. In addition, because the rear positioning recess 3446 is a half opening, the lateral retaining arm 53 still contacts the metal cover 30a stably. When the blocking portion 532 of the lateral retaining arm 53 is engaged into the front positioning opening 3445, the metal cover 30a is stopped at the initial position (as shown in
Reference is made to
Reference is made to
Reference is made to
Finally, as shown in
Beneficial effects of the present disclosure are as follows. The electrical connector (1, 1a) for FFC/FPC has the metal cover (30, 30a) which is moved in a horizontal sliding manner, so that the overall height can be reduced. In addition, the guiding bump 146 and the oblique-entry space 140 of the insulating housing 10a can reduce an occurrence of displacement of the FFC/FPC C, and cooperate with a horizontal sliding manner of the metal cover 30, 30a to press down the FFC/FPC C, so that the FFC/FPC C can be stably fixed and an occurrence of displacement of the FFC/FPC can be reduced. Furthermore, the metal cover covers the FFC/FPC, which can shield electromagnetic interference.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
This application claims the benefit of priority to U.S. provisional Patent Application No. 62/776,493, filed on Dec. 7, 2018. The entire content of the above-identified application is incorporated herein by reference. Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62776493 | Dec 2018 | US |