Information
-
Patent Grant
-
6186811
-
Patent Number
6,186,811
-
Date Filed
Thursday, July 23, 199826 years ago
-
Date Issued
Tuesday, February 13, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 67
- 439 260
- 439 325
- 439 326
- 439 495
-
International Classifications
-
-
Disclaimer
Terminal disclaimer
Abstract
An electrical connector includes an elongated dielectric housing defining a slot for receiving a flat electrical circuit. A plurality of terminals are mounted on the housing, with contact portions spaced along the slot. A metal actuator is mounted on the housing and includes a pressure plate portion for biasing the flat electrical circuit against the contact portions of the terminals. A flexible elongated strip portion is spaced forwardly of the pressure plate portion and extends longitudinally of the housing to define a preliminary circuit holding means at a mouth of the slot. The pressure plate portion is separated from the elongated strip portion at opposite ends thereof by open areas to, thereby, isolate the flexibility of the elongated strip portion from that of the pressure plate portion.
Description
FIELD OF THE INVENTION
This invention generally relates to the art of electrical connectors and, particularly, to connectors for electrically interconnecting flat electrical circuitry such as flat flexible circuitry.
BACKGROUND OF THE INVENTION
A flat flexible electrical circuit conventionally includes an elongated flat flexible dielectric substrate having laterally spaced strips of conductors on one or both sides thereof. The conductors may be covered with a thin, flexible protective layer on one or both sides of the circuit. If protective layers are used, cutouts are formed therein to expose the underlying conductors at desired contact locations where the conductors are to engage the conductors of a complementary mating connecting device which may be a second flat flexible circuit, a printed circuit board or the terminals of a mating connector.
A wide variety of zero insertion force electrical connectors have been designed particularly adapted for terminating flat circuits, such as flat flexible circuits, flexible printed circuit boards and the like. These electrical connectors conventionally have a housing mounting a plurality of terminals in a generally parallel array spaced. along an elongated opening or slot for receiving an end of the flat circuit. Typically, these connectors use actuators to push the flat circuits, flexible printed circuit boards or the like against resilient contact portions of the terminals.
The actuators of these flat circuit connectors typically are movable between a first position allowing free insertion of the flat circuit into the elongated opening or slot in the housing, and a second position wherein a pressure plate portion of the actuator biases the circuit against the contact portions of the terminals. For instance, the pressure plate biases the exposed conductors of a flat circuit against the contact portions of the terminals.
Major problems continue to plague such connectors, particularly in the areas of cost, size, operability and reliability. With the ever-increasing miniaturization of electronic circuitry, it has become desirable to provide connectors for flat circuits as thin as possible. It is desirable to provide some form of temporary holding means on the connectors for preliminarily holding the flat circuit. It also is desirable to provide some sort of means to hold the actuator in one or both of its positions on the connector housing. Providing these features or means are difficult with extremely small or miniaturized connectors. The present invention is directed to solving one or more of these problems and satisfying such needs.
SUMMARY OF THE INVENTION
An object, therefore, of the invention is to provide a new and improved electrical connector for receiving a flat electrical circuit.
In the exemplary embodiment of the invention, the connector includes an elongated dielectric housing defining a. slot for receiving the flat electrical circuit. A plurality of terminals are mounted on the housing, with contact portions spaced along the slot. A metal actuator is mounted on the housing and includes a pressure plate portion for biasing the flat electrical circuit against the contact portions of the terminals. A flexible elongated strip portion is spaced forwardly of the pressure plate portion and extends longitudinally of the housing to define a preliminary circuit holding means at a mouth of the slot. The pressure plate portion is separated from the elongated strip portion at opposite ends thereof by open areas to, thereby, isolate the flexibility of the elongated strip portion from that of the pressure plate portion.
As disclosed herein, the open areas between the pressure plate portion and the elongated strip portion are formed by elongated slots extending transverse to the longitudinal direction of the elongated strip portion. The flexible pressure plate portion comprises a. plurality of flexible fingers. Each finger has a width to cover on the order of two contact portions of two terminals.
The elongated strip portion in the preferred embodiment is formed by a cross portion between a pair of legs of a U-shaped section of the metal actuator. The rear ends of the legs are joined to a rear area of the pressure plate portion of the actuator. The pressure plate portion projects forwardly into the U-shaped section and is separated from the legs by the aforementioned opened areas. The elongated strip portion is flexible enough to allow for the easy insertion of the flat circuitry while preventing easy withdrawal until the actuator is moved to its final holding position.
Other objects, features and advantages of the invention will be apparent from the following detailed description taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with its objects and the advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the figures and in which:
FIG. 1
is a top plan view of a flat circuit connector according to a first embodiment;
FIG. 2
is an enlarged vertical section taken generally along line
2
—
2
of
FIG. 1
;
FIG. 3
is a front elevational view of the connector of
FIG. 1
;
FIG. 4
is a bottom plan view of the connector of
FIG. 1
;
FIG. 5
is a view similar to that of
FIG. 2
, with the connector temporarily holding the flat circuit;
FIG. 6
is a view similar to that of
FIG. 5
, with the actuator moved to complete the termination of the flat circuit;
FIG. 7
is an enlarged end elevational view, looking toward the right-hand end of
FIG. 1
;
FIG. 8
is a perspective view of a connector for a flat circuit according to a second embodiment;
FIG. 9
is an enlarged vertical section taken generally along lines
9
—
9
of
FIG. 8
, with the connector terminating a flat circuit;
FIG. 10
is a bottom plan view of the connector of
FIG. 8
;
FIG. 11
is a front elevational view of the connector of
FIG. 8
;
FIG. 12
is an end elevational view of the connector of
FIG. 8
, with the actuator shown in phantom in its preliminary position;
FIG. 13
is a top perspective view of the connector of
FIG. 8
, with the actuator removed;
FIG. 14
is a bottom perspective view of the connector of
FIG. 8
, with the actuator removed;
FIG. 15
is a top plan view of the actuator of the connector of
FIG. 8
;
FIG. 16
is a front elevational view of the actuator;
FIG. 17
is an end elevational view of the actuator;
FIG. 18
is a vertical section taken generally along line
18
—
18
of
FIG. 15
;
FIG. 19
is a view similar to that of
FIG. 9
, with the actuator in its first position and the flat circuit removed; and
FIG. 20
is a view similar to that of
FIG. 18
, but of an alternate embodiment of the actuator.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to the drawings in greater detail,
FIGS. 1-7
show a first embodiment of an electrical connector, generally designated
1
, for receiving or terminating a flat electrical circuit, such as a flat flexible circuit, a printed circuit board or the like.
FIGS. 8-20
show a second embodiment of an electrical connector, generally designated
41
, also for receiving or terminating a flat electrical circuit.
Turning first to
FIGS. 1-7
, connector
1
includes an elongated dielectric housing
3
mounting a plurality of terminals
2
mounted on the housing in a parallel arrangement at regularly spaced intervals longitudinally of the housing. A generally U-shaped actuator, generally designated
4
, is mounted on the housing for movement between a first position allowing free insertion of a flat electrical circuit into the connector and a second position biasing the circuit against the terminals, as will be seen hereinafter. A metal fixing member
5
is insert-molded in housing
3
at each opposite end thereof.
As best seen in
FIGS. 2 and 5
, each terminal
2
is stamped and formed from sheet metal material and includes a contact portion
6
having a raised contact projection
6
a
intermediate its opposite ends. The contact portion is joined to a horizontal solder tail
7
by an integral oblique joint section
8
. The terminals are insert-molded in housing
3
so that the opposite ends of contact portion
6
are overmolded by the housing. Therefore, at least the opposite ends of the contact portion are rigid or fixed against movement relative to the housing. In most prior art connectors for flat circuits, the contact portions of the terminals are cantilevered and flexible. Therefore, the connector housings must be enlarged or made thicker to accommodate the flexing movement of the contact portions. With the entire contact portion or the opposite ends of the terminals fixed against movement relative to the housing the movement of the contact portion relative to the housing is eliminated or greatly reduced allowing for a thinner housing. By providing an actuator, as described in detail below, having portions located above and below the contact portion, the portion of the housing under the terminal contact portion may be thin and somewhat flexible and still will be able to provide the force needed to make a good electrical engagement between the contact portion and a conductor on the flat circuit
30
.
Elongated dielectric housing
3
is a one-piece structure unitarily molded of plastic material or the like. Therefore, the housing can be overmolded about portions of terminals
2
and fixing members
5
by an appropriate insert-molding process. The housing has a generally rectangular plate-like configuration defining a slot
9
at the top/front thereof for receiving a flat circuit
30
. The housing has a relatively thick rear section
10
which facilitates mounting actuator
4
thereon. Contact portions
6
of the terminals are generally flush with a floor
9
a
of slot
9
, and solder tails
7
of the terminals extend forwardly along a bottom surface
3
b
of the housing and project slightly forwardly of the front of the housing as seen best in
FIGS. 2 and 5
. Contact portions
6
and oblique joint sections
8
of terminals
2
are embedded in housing
3
, with the upper surfaces of contact portions
6
exposed in floor
9
a
of slot
9
, and with contact projections
6
a
projecting into the slot.
Dielectric housing
3
also has upper guide walls
11
extending the width of the housing at opposite ends thereof and projecting upwardly from a top surface
3
a
of the housing. Bottom guide walls
13
extend the width of the housing at opposite ends thereof and project downwardly from bottom surface
3
b
of the housing and define a longitudinal recess
18
within which actuator
4
is slidably mounted. As best seen in
FIG. 4
, the housing has a plurality of guide ribs
19
which project into a corresponding plurality of guide grooves or notches
19
a
in the actuator.
Each fixing member
5
is stamped and formed of sheet metal material and includes a plurality of plate portions
5
a.
Portions of the fixing members are overmolded by housing
3
, and plate portions
5
a
are exposed for connection, as by soldering, to appropriate mounting pads on a printed circuit board. Therefore, fixing members
5
function to mount the housing and, thereby, the connector to the printed circuit board. The bottom surfaces of plate portions
5
a
are coplanar with the bottom surfaces of solder tails
7
of terminals
2
as seen in
FIGS. 2
,
5
and
6
. The plate portions of the fixing members and the solder tails of the terminals can be soldered simultaneously to the printed circuit board.
As seen in
FIG. 1
, each fixing member
5
has a latch tab
20
which projects into a recess
21
in the top of housing
3
. The latch tabs have upwardly projecting stops
20
a.
As best seen in
FIG. 4
, each fixing member
5
has first and second stop shoulders
5
b
and
5
c,
respectively, projecting from the bottom of the housing.
Actuator
4
is stamped and formed of sheet metal material, such as stainless steel or the like, into a generally U-shaped configuration to define a top plate
4
a
and a bottom plate
4
b.
A preliminary circuit holding strip
22
is disposed forwardly of top plate
4
a.
Preliminary holding strip
22
forms a cross portion between a pair of legs
23
of a U-shaped section of metal actuator
4
. The rear ends of legs
23
are joined, as at
24
, to a rear area of top plate
4
a.
In essence, top plate
4
a
forms a pressure plate portion of actuator
4
and includes a plurality of forwardly projecting fingers
25
separated by slots
26
. The fingers are used to bias flat circuit
30
against contact projections
6
a
of terminals
7
, as will be seen hereinafter. Each finger has a width to cover the contact projections of an adjacent pair of terminals. By separating the fingers by slots
26
, any dirt that might accumulate on the contact projections can be swept to the side into the slots during use. Finally in referring to
FIG. 1
, a latch tab
27
is formed at each front corner of preliminary holding strip
22
. The preliminary holding strip is of a double-thickness by folding the metal material of the actuator back onto itself as seen in
FIGS. 2
,
5
and
6
.
Referring to
FIG. 4
, a flexible latch arm
28
is provided at each end of actuator
4
at the bottom thereof. Each latch arm terminates in an outwardly projecting latch hook
28
a.
Metal actuator
4
is movable on housing
3
from a first position shown in
FIGS. 2 and 5
to a second position shown in FIG.
6
. In the first position, flat circuit
30
is free to be inserted into slot
9
of the housing. In the second position, fingers
25
of the actuator bias the circuit against the contact portions of terminals
2
. When the actuator is in its first position, latch hooks
28
a
of latch arms
28
seat behind first stop shoulders
5
b
of fixing members
5
as seen in FIG.
4
. When the actuator is moved from its first position (
FIGS. 2 and 5
) to its second position (FIG.
6
), latch hooks
28
a
(
FIG. 4
) are biased inwardly by oblique surfaces
5
d
of fixing members
5
until the latch hooks snap back outwardly into engagement behind second stop shoulders
5
c
of the fixing members. This holds the actuator in its final circuit-terminating position. In addition, referring back to
FIG. 1
, latch tabs
27
at the top of the actuator and at opposite ends of preliminary holding strip
22
slide under stops
20
a
of latch tabs
20
of the fixing members when the actuator is moved to its final circuit-terminating position locking the preliminary holding strip against the flat circuit
30
further helping to hold the flat circuit in the connector housing. Therefore, metal-to-metal engagements are provided at both the top and bottom of the connector between the metal actuator and the metal fixing members.
In connecting or terminating flat circuit
30
to connector
1
, the circuit is inserted into slot
9
of housing
3
with actuator
4
in its first position as shown in FIG.
2
. The circuit is inserted freely and rotated downwardly in the direction of arrow
31
until a front end
30
a
of the circuit is fully inserted into slot
9
as shown in FIG.
5
. In this position, and with actuator
4
still in its first or inoperative position, preliminary holding strip
22
temporarily holds the circuit as seen in FIG.
5
. The actuator then is pushed forwardly in the direction of arrow “A” (
FIG. 6
) until pressure fingers
25
of top plate or pressure plate
4
a
of the housing biases the flat circuit against contact projections
6
a
of contact portions
6
of terminals
2
. Legs
23
which are connected to preliminary holding strip
22
are separated from pressure fingers
25
and pressure plate
4
a
by open areas or elongated slots
29
. Consequently, the flexibility of preliminary holding strip
22
is totally independent or isolated from the flexibility of fingers
25
. If desired, the temporary holding forces of preliminary holding strip
22
can be made less than the connecting forces provided by fingers
25
. Therefore, the preliminary holding strip can be raised easily by the flat circuit which may be a very small flexible circuit, while fingers
25
apply a stronger connecting force of the circuit against the contact projections of the terminals. When it is desired to remove the circuit from the connector, actuator
4
simply is pulled back rearwardly opposite the direction of arrow “A” (
FIG. 6
) to its first or inoperative position shown in
FIGS. 2 and 5
.
Referring to the second embodiment of
FIGS. 8-19
, connector
41
includes a plurality of terminals
42
for connection to a flat circuit
43
, the terminals being insert-molded in a housing
44
. Like the first embodiment, the housing is a generally rectangular plate-like structure. A generally U-shaped actuator
45
is mounted on the housing for movement between a first position shown in
FIG. 19
allowing free insertion of flat circuit
43
into a slot
46
of the housing and a second position biasing the circuit against contact portions of the terminals.
More particularly, as best seen in
FIGS. 9 and 19
, each terminal
42
has an intermediate section
42
a
overmolded by housing
44
, leaving a contact portion
47
and a solder tail portion
48
exposed outside the housing. The contact portion is cantilevered into an opening
44
c
in housing
44
, with a contact projection
47
a
at a distal end of the contact portion projecting into slot
46
.
As best seen in the top perspective view of
FIG. 13
, housing
44
has a lateral shelf
50
adjacent the free ends of contact portions
47
of the terminals. The housing has a flat U-shaped stepped surface
51
recessed from a top surface
44
a
of the housing equal to the thickness of a top plate
45
A of actuator
45
so that the top of the actuator is substantially flush with top surface
44
a
of the housing. A flat surface
51
a
defines the bottom of a mouth
52
(
FIG. 9
) for receiving flat circuit
43
inserted into slot
46
. Surface
51
a
is substantially at the same level as shelf
50
. Guide walls
53
are formed at opposite ends of stepped surface
51
, and stop walls
54
are formed at opposite ends of the circuit-receiving mouth.
Referring to the bottom perspective view of
FIG. 14
, housing
14
further has a flattened, U-shaped stepped surface
55
recessed inwardly of a bottom surface
44
b
of the housing. Stepped surface
55
is recessed from bottom surface
44
b
a distance substantially equal to the thickness of a bottom plate
45
b
of actuator
45
so that the bottom surface of the actuator is substantially flush with the bottom surface of the housing. Stop walls
56
and inclined latch projections
57
also are formed on the bottom of the housing.
As seen in both
FIGS. 13 and 14
, a pair of fixing members
49
are insert molded in opposite ends of housing
44
and include exposed tab portions
49
a
for solder connection to appropriate mounting pads on a printed circuit board.
Referring to
FIGS. 15-18
, actuator
45
is stamped and formed of sheet metal material, such as aluminum or the like. At least the areas of the actuator which engage contact portions
47
of terminals
42
are coated with a dielectric material
58
(FIG.
9
), such as an insulating resin. For simplicity purposes, the entire sheet metal material of the actuator can be coated with the insulating material.
Actuator
45
is formed in a generally U-shaped configuration to define top plate
45
a
and bottom plate
45
b.
The top plate has notched corners
59
at the front thereof to abut stop walls
54
(
FIG. 13
) on the top of housing
44
. A preliminary holding strip
67
, similar to preliminary holding strip
22
of the first embodiment, extends between notched corners
59
. The preliminary holding strip is disposed above surface
51
a
(
FIG. 13
) to define a mouth therebetween for receiving the flat circuit. The preliminary holding strip forms a cross portion between a pair of legs
67
a
of a U-shaped section of the metal actuator. The rear ends of legs
67
a
are joined to a rear area of top plate
45
a
of the actuator. A pair of pressure-applying fingers
62
, separated by a slot
61
, project forwardly into the U-shaped section and are separated from legs
67
a
by open areas
60
. Therefore, like the first embodiment, the flexibility of preliminary holding strip
67
is independent of or isolated from the flexibility of fingers
62
. As best seen in
FIG. 17
, the free ends
62
a
of fingers
62
are inclined downwardly or inwardly.
Bottom plate
45
b
of actuator
45
is generally flat and has rectangular projections
63
at the front corners thereof. These projections are captured between stop walls
56
(
FIG. 14
) and inclined latch projections
57
of the housing when the actuator is mounted on the housing. This can be seen best in FIG.
12
and allows for movement of the actuator between its inoperative and operative positions.
In operation of the second embodiment, U-shaped actuator
45
is mounted about the rear of housing
44
as best seen in
FIG. 19
, with the actuator in a first position as shown therein. In this position, flat circuit
43
can be inserted freely into slot
64
of the housing. The actuator then is moved forwardly in the direction of arrow “B” (
FIG. 9
) to a second position whereat fingers
62
bias a free end
43
a
of flat circuit
43
against contact projections
47
a
of contact portions
47
of terminals
42
. At the same time, bottom plate
45
b
of the actuator abuts against the bottoms of contact portions
47
of the terminals, as at
70
. With the actuator coated with insulating material, the bottom plate does not short the terminals. Therefore, it can be seen that actuator
45
performs dual functions of (1) biasing flat circuit
43
against the contact portions of the terminals and (2) also providing reinforcing support for the contact portions. In addition, preliminary holding strip
67
provides a means for temporarily holding the flat circuit while an operator manually manipulates the actuator. When the actuator is in its final or second position, notched corners
59
(
FIG. 15
) of the actuator engage stop walls
54
(
FIG. 13
) of the housing, as seen in FIG.
8
.
By fixing contact portions
6
of terminals
7
in the first embodiment, and by reinforcing contact portions
47
of terminals
42
in the second embodiment, the overall profile of the connectors can be made thinner because the flexibility required to maintain a positive contact between the flat circuit and the terminals is provided by the pressure plate portions or fingers of the actuators.
Lastly,
FIG. 20
shows an alternate embodiment of an actuator
45
which does not include a separated preliminary holding strip. In this embodiment, bulged areas
65
have downwardly formed projections
65
a
which oppose contact projections
47
a
of contact portions
47
of terminals
42
when the actuator is moved to its connecting or terminating position. Projections
65
a
of the actuator bias the flat circuit against projections
47
a
of the terminals. Nevertheless, this actuator also performs the dual functions of biasing the circuit against the contact portions of the terminals and also providing reinforcing support for the contact portions.
It will be understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Claims
- 1. An electrical connector for receiving a flat electrical circuit, comprising:an elongated dielectric housing defining a slot for receiving the flat electrical circuit; a plurality of terminals mounted on the housing with contact portions spaced along the slot; and a metal actuator mounted on the housing and including a pressure plate portion for biasing the flat electrical circuit against the contact portions of the terminals, a flexible elongated strip portion spaced forwardly of the pressure plate portion and extending longitudinally of the housing to define a preliminary flat circuit holding means at a mouth of the slot, and the pressure plate portion being separated from the elongated strip portion at opposite ends thereof by open areas to, thereby, isolate the flexibility of the elongated strip portion from that of the pressure plate portion.
- 2. The electrical connector of claim 1 wherein said open areas comprise elongated slots extending transverse to the longitudinal direction of the elongated strip portion.
- 3. The electrical connector of claim 1 wherein said flexible plate portion of the actuator comprises a plurality of flexible fingers.
- 4. The electrical connector of claim 3 wherein each of said flexible fingers has a width to cover on the order of two contact portions of two terminals.
- 5. The electrical connector of claim 1 wherein said elongated strip portion comprises a cross portion between a pair of legs of a U-shaped section of the metal actuator, with rear ends of the legs being joined to a rear area of the pressure plate portion of the actuator, the pressure plate portion projecting forwardly into the U-shaped section and being separated from the legs by said open areas.
- 6. The electrical connector of claim 1 including complementary interengaging locking means between a metal fixing member mounted on the housing for securing the connector to an appropriate mounting pad on a printed circuit board and the metal actuator to lock the elongated strip portion against the flat electrical circuit.
- 7. An electrical connector for receiving a flat electrical circuit, comprising:an elongated dielectric housing defining a slot for receiving the flat electrical circuit; a plurality of terminals mounted on the housing with contact portions spaced along the slot; and a metal actuator mounted on the housing and including a pressure plate portion having a plurality of flexible fingers for biasing the flat electrical circuit against the contact portions of the terminals, the actuator including a U-shaped section defining an elongated flexible strip portion extending between a pair of legs of the U-shaped configuration, the rear ends of the legs being joined to a rear area of the pressure plate portion, the flexible fingers projecting forwarding into the U-shaped section and being separated from the legs by open areas, and the elongated flexible strip portion being spaced forwardly from the flexible fingers to define a preliminary flat circuit holding means at a mouth of the slot, with said open areas being effective to isolate the flexibility of the elongated strip portion from that of the flexible fingers.
- 8. The electrical connector of claim 7 wherein each of said flexible fingers has a width to cover on the order of two contact portions of two terminals.
- 9. An electrical connector for receiving a flat electric circuit, comprising:an elongated dielectric housing defining a slot for receiving the flat electrical circuit; a plurality of terminals mounted on the housing with contact portions spaced along the slot; and a metal actuator mounted on the housing for movement between a first position allowing free insertion of the flat electrical circuit into the slot and a second position wherein a pressure plate portion of the actuator biases the circuit against the resilient contact portions of the terminals, the actuator including a flexible elongated strip portion spaced forwardly of the pressure plate portion and extending longitudinally of the housing to define a preliminary flat circuit holding means at a mouth of the slot, and the pressure plate portion being separated from the elongated strip portion at opposite ends thereof by open areas to, thereby, isolate the flexibility of the elongated strip portion from that of the pressure plate portion.
- 10. The electrical connector of claim 9 wherein said open areas comprise elongated slots extending transverse to the longitudinal direction of the elongated strip portion.
- 11. The electrical connector of claim 9 wherein said flexible plate portion of the actuator comprises a plurality of flexible fingers.
- 12. The electrical connector of claim 11 wherein each of said flexible fingers has a width to cover on the order of two contact portions of two terminals.
- 13. The electrical connector of claim 10 wherein said elongated strip portion comprises a cross portion between a pair of legs of a U-shaped section of the metal actuator, with rear ends of the legs being joined to a rear area of the pressure plate portion of the actuator, the pressure plate portion projecting forwardly into the U-shaped section and being separated from the legs by said open areas.
- 14. The electrical connector of claim 9 including complementary interengaging locking means between a metal fixing member mounted on the housing for securing the connector to an appropriate mounting pad on a printed circuit board and the metal actuator to lock the elongated strip portion against the flat electrical circuit.
Priority Claims (3)
Number |
Date |
Country |
Kind |
9-220693 |
Aug 1997 |
JP |
|
9-362849 |
Dec 1997 |
JP |
|
9-362850 |
Dec 1997 |
JP |
|
US Referenced Citations (8)