The field of the invention relates to electrical connectors and particularly electrical connectors for interconnecting memory modules to printed circuit boards.
Many different types of memory modules are provided for use in computer technology, such as DIMMs and SIMMs, which must be interconnected to a motherboard or other printed circuit board. Typically such connectors include a plastic housing having a plurality of electrical contacts mounted on one or both sides of a slot which receives the memory module, the connector further including electrical contacts which interconnect traces on the memory modules with traces on the printed circuit boards. Many different types of memory module connectors are provided, some of which include edge-stamped contacts, that is, where the entire contact is stamped or etched in a plane from a blank of conductive material, where the plane of the material is disposed transverse to the slot in the housing. Another type of electrical terminal is the stamped and formed terminal, where the terminal is also formed from a blank of material where the plane of the original material is parallel to the slot receiving the memory module, but the terminals are stamped and formed to form the various contact portions.
U.S. Pat. No. 5,082,459 shows a representative socket, where the contacts are edge-stamped and where the contacts include alternative printed circuit board receiving contact positions, such that alternate contacts can have staggered printed circuit board contact portions so as to increase the side-to-side density of the contacts as well as the position of the throughholes on the printed circuit board. As mentioned above, such edge-stamped contacts are stamped in a single plane of the material, where the edge which is stamped or etched is the contact surface.
Alternatively, another style of contact is shown in U.S. Pat. No. 6,102,744, where the contacts are stamped and formed, where the contacts include both a memory module contact and a printed circuit board contact. Some of the contacts are stamped and formed so as to lie substantially in a single plane, whereas other contacts are formed with a printed circuit board portion staggered laterally away from the slot so as to stagger the electrical terminals.
It is the latter design, that is, the design as substantially shown in U.S. Pat. No. 6,102,744, which is incorporated in its entirety herein, to which the present invention relates. As shown in U.S. Pat. No. 6,102,744, the printed circuit board tine portions are profiled for receipt in printed circuit board throughholes, and are adapted for a soldered connection to the throughhole. While this design has proven quite adequate for such soldered connections, in the case of a compliant pin portion, that is, where the printed circuit board contact portion includes a configuration for interferingly fitting within a plated throughhole of a printed circuit board, the contacts having the staggered printed circuit board contact can be damaged.
The damage does not occur in the contacts where the printed circuit board portion is in the same plane as the memory module contact, because the column strength of the memory module contact itself is sufficiently rigid to withstand the force of the insertion of the terminal into the throughhole. However, when the contacts are staggered, the compliant pin portion does not have sufficient rigidity in the plane of the compliant pin portion to allow a force on that portion of the terminal and yet be inserted without damage to the contact and/or connector.
It is this problem which the present invention addresses.
The objects of the invention have been accomplished by providing an electrical connector of the type for receiving a memory module, the connector comprising an electrical connector housing having a board mounting face and a module receiving face, the module receiving face including a slot for receiving a memory module, and contact receiving cavities flanking the slot. Electrical terminals are received in the cavities, each terminal including a memory module contact facing, and partially overlapping, the slot, and the terminals including compliant printed circuit board connecting portions. Some of the compliant portions are planar with its corresponding memory module contact, and some of the compliant printed circuit board connecting portions are staggered laterally away from the slot to stagger adjacent compliant printed circuit board connecting portions. The staggered compliant printed circuit board connecting portions are connected to the memory module contacts by way of a tail portion, and the electrical terminals include at least one rigidifying finger adjacent to the compliant pin portion, for rigidifying the compliant printed circuit board connecting portions during insertion of the connector into a printed circuit board.
The at least one rigidifying finger preferably upstands in the plane of the compliant printed circuit board connecting portions.
The at least one rigidifying finger, also preferably upstands beyond the intersection of the compliant printed circuit board connecting portions and the tail portions. The electrical terminals are stamped and formed from a metal material with the tail portions sheared from the material forming the compliant printed circuit board connecting portions, with the rigidifying fingers upstanding in the plane of the material forming the compliant printed circuit board connecting portions.
The electrical contacts may each include two rigidifying fingers, flanking the tail portion. Alternatively, the electrical contacts may each include a single rigidifying finger, with the tail portion flanking the single rigidifying finger.
The housing includes transverse cavity portions to receive the rigidifying fingers. The transverse cavity portions may be formed of a generally circular shaped cross-section, and the rigidifying fingers are generally rectangular in cross-section, wherein the rigidifying fingers are forced fitted in said transverse cavity portions, with corners of said rigidifying fingers interferingly fitting in said generally circular shaped cross-sectional cavity portions. The contact receiving cavities open onto the board-mounting face. The memory module contacts include a retention portion for retaining the contact in the associated contact-receiving cavity.
In an alternative embodiment of the invention, an electrical connector of the type for receiving a memory module comprises an electrical connector housing having a board mounting face and a module receiving face. The module receiving face includes a slot for receiving a memory module and contact receiving cavities flanking the slot. Electrical terminals are received in the cavities, each terminal including a memory module contact facing, and partially overlapping, the slot, and the terminals including compliant printed circuit board connecting portions, at least some of the compliant printed circuit board connecting portions being staggered laterally away from the slot to stagger adjacent compliant printed circuit board connecting portions, the staggered compliant printed circuit board connecting portions being connected to the memory module contacts by way of a tail portion, and the electrical terminals including at least one rigidifying finger adjacent to the compliant pin portion, for rigidifying the compliant printed circuit board connecting portions during insertion of the connector into a printed circuit board, the at least one rigidifying finger upstands in the plane of the compliant printed circuit board connecting portions.
The at least one rigidifying finger, preferably upstands beyond the intersection of the compliant printed circuit board connecting portions and the tail portions. The terminals are stamped and formed from a metal material with the tail portions sheared from the material forming the compliant printed circuit board connecting portions, with the rigidifying fingers upstanding in the plane of the material forming the compliant printed circuit board connecting portions.
The electrical contacts may each include two rigidifying fingers flanking the tail portion. Alternatively, the electrical contacts may each include a single rigidifying finger, with the tail portion flanking the single rigidifying finger.
The housing includes transverse cavity portions to receive the rigidifying fingers. The transverse cavity portions may be formed of a generally circular shaped cross-section, and the rigidifying fingers are generally rectangular in cross-section, wherein the rigidifying fingers are forced fitted in said transverse cavity portions, with corners of said rigidifying fingers interferingly fitting in said generally circular shaped cross-sectional cavity portions. The contact receiving cavities open onto the board-mounting face. The connector further comprises a channel that opens onto the mounting face, and which interconnects the contact receiving cavities and the transverse cavity portions, and receives the tail portions therein. The memory module contacts include a retention portion for retaining the contact in the associated contact-receiving cavity.
In an inventive method of forming an electrical terminal for the connector, the method includes the steps of providing a blank of suitably conductive material in a planar form; forming an edge contact on a portion thereof profiled for contact with a memory module; forming a compliant pin portion profiled for receipt within a throughhole of a printed circuit board; forming a substantially vertical shear line in the material forming the compliant pin portion; and bending the compliant pin portion relative to the shear line to form a tail portion interconnecting the compliant pin portion and the edge contact, with a rigidifying finger upstanding in the plane of the compliant pin portion, and beyond the intersection of the tail portion and compliant pin portion.
The electrical contacts are preferably formed into a substantially Z-shaped configuration. The electrical contacts may each be formed to include two rigidifying fingers flanking the tail portion. Alternatively, the electrical contacts may each be formed to include a single rigidifying finger, with the tail portion flanking the single rigidifying finger.
The method may also further comprise the step of forming an insulative housing, in which said electrical contacts are housed, including transverse cavities wherein said rigidifying fingers are positioned. The transverse cavity portions are formed of a generally circular shaped cross-section, and the rigidifying fingers are generally rectangular in cross-section, wherein the rigidifying fingers are forced fitted in said transverse cavity portions, with corners of said rigidifying fingers interferingly fitting in said generally circular shaped cross-sectional cavity portions.
In another embodiment of the invention, an electrical connector comprises an electrical connector housing having a board mounting face and an upper face, the housing including contact receiving cavities, where at least some of the contact receiving cavities have bearing surfaces adjacent the cavities, which are recessed from the board mounting face. Electrical terminals are received in the cavities, each terminal including a contact portion extending upwardly from an intermediate retaining portion and printed circuit board connecting portions extending downwardly from the intermediate retaining portion. The terminals further comprise engaging portions, adjacent the intermediate retaining portions, having a cross sectional area larger than the intermediate retaining portion. The engaging portions are profiled to contact the bearing surfaces of the housing.
The bearing surfaces may be defined by recessed surfaces flanking the cavities, and the engaging portions may be U-shaped.
With reference first to
With reference now to
With reference to
With respect now to
Finally, the compliant pin portion 64 includes an extending tine portion 80, including a bulbous contact section 82 having a slot 84 therein. This type of compliant pin section is typically referred to as an “eye-of-the-needle”-type compliant pin section. However, it should be appreciated that other compliant pin portions, such as assignee's “ACTION PIN”-type contact or a split-arrow-type compliant section, would also be usable.
With respect still to
As shown in
As also shown in
With respect now to
As shown best in
With reference now to
Advantageously, and with reference again to
In addition, any of the connector housings 4, 104, 204 act as a seating tool for the respective compliant pin portions of the respective contacts 8, 10; 108, 110. That is, the transverse cavities 48, 148, 248 assist in applying a force on the rigidifying portions 88, 188 to assist the terminal to seat in a respective board if not seated. Also the U-shaped portions 74, 174 can be pushed by respective surfaces 59 (
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/525,628 filed Nov. 26, 2003, the complete disclosure of which is hereby expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5082459 | Billman et al. | Jan 1992 | A |
5580257 | Harwath | Dec 1996 | A |
6071152 | Achammer et al. | Jun 2000 | A |
6102744 | Korsunsky et al. | Aug 2000 | A |
6616459 | Norris | Sep 2003 | B1 |
6672886 | Billman | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050112933 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60525628 | Nov 2003 | US |