1. Field of the Invention
The present invention relates to the art of an electrical connector, and particularly to an electrical connector has an insulative housing having a curved structure for avoiding contacts having an excessive deformation under pressing force provided by a modular plug.
2. Description of Prior Arts
An electrical connector is disclosed in U.S. Pat. No. 5,310,360 issued on May 10, 1994. The electrical connector includes an insulative housing and a plurality of contacts mounted on the insulative housing. The insulative housing has a top wall, a bottom wall, and opposite lateral walls, and a receiving cavity defined therebetween for receiving a modular plug. Each contact includes a mating portion extending into the cavity and cantilevered below the top wall, a fastening portion mounted in a top wall and an intermediate arc portion interconnected with the mating portion and the fastening portion. The modular plug is engaged with the mating portion and presses the mating portion to the top wall when the modular plug is inserted into the cavity.
However, a pressing force provided by the modular plug is concentrated on the intermediate arc portion of the contact when the modular plug is inserted into the cavity. Thus the intermediate arc portion is deformable and the contact would have a decreased elasticity. In addition, modular plugs of different precision may be engaged with the mating portion of the contact of different position, it would result in the contact having an excessive deformation under the dispersed pressing force. And it is difficult to realize a reliable engagement between the electrical connector and different modular plugs.
Hence, it is desirable to provide an improved electrical connector to overcome the aforementioned disadvantages.
An object of the present invention is to provide an electrical connector having an insulative housing having a curved structure for avoiding contacts having an excessive deformation under a pressing force provided by a modular plug.
To achieve the above object, an electrical connector for electrically connecting with a modular plug includes an insulative housing having a receiving cavity and a resisting block formed in the receiving cavity, the resisting block having a curved surface. A number of contacts mounted in the receiving cavity. Each contact having a fastening portion fastened in the insulative housing, a mating portion extending into the receiving cavity and cantilevered above the resisting block. The modular plug is engaged with the mating portion and presses the mating portion to the resisting block when the modular plug is inserted into the receiving cavity. Wherein, when the modular plug is inserted into the receiving cavity of the insulative housing, the mating potion abuts against the curved surface.
During assembly, a pressing force provided by the modular plug is distributed equally along the mating portion of the contact, rather than concentrated on a certain portion of the mating portion. The contact could be protected since it is hard to having an excessive deformation under the dispersed pressing force. In addition, the engagement between the contact and the modular plug is therefore reliable.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made to the drawing figures to describe the present invention in detail.
Referring to
A plurality of contacts 20 are mounted in the receiving cavity 100. Each contact 20 includes a mating portion 21 disposed at one end, a tail portion 22 disposed at an opposite end and a fastening portion 23 formed therebetween. The mating portion 21 is connected with the fastening portion 23 via an U-shaped intermediate arc portion 24. The mating portion 21 extends diagonally into the receiving cavity 100 for engaging with the modular plug 2. The tail potion 22 is disposed perpendicular to the inner printed circuit board 30 and has an end for electrically connecting with the inner printed circuit board 30. The fastening portion 23 is fastened in the securing passages 125.
The curved surface 122 and the concave portion 123 and the supporting portion 124 are formed as a resisting block 126. The fastening portion 23 of the contact 20 is disposed at a bottom surface of the resisting block 126. The U-shaped intermediate arc portion 24 is disposed around a front end of the resisting block 126. The mating portion 21 of the contact 20 is cantilevered above the resisting block 126. The curved surface 122 is bulgy towards the mating portion 21 of the contact 20.
When the modular plug 2 is inserted into the receiving cavity 100, the modular plug 2 is engaged with the mating portion 21, and the modular plug 2 presses the mating portion 21 bent to the resisting block 126. The mating portion 21 has a lower surface (not labeled) abutting against the curved surface 122 of the resisting block 126. And the mating portion has a free end (not labeled) abutting against the supporting portion 124. When the plug connector 2 is inserted into the receiving cavity 100 of the electrical connector 1, a gap (not labeled) is defined between the concave portion 123 and the mating portion 21 of the contact 20 for allowing a deformation of the mating portion 21 when the contact 20 is resisted against by the resisting block 126. In another embodiment, the curved surface 122, or the curved surface 122 and the concave portion 123 is or are formed as a resisting block 126. The mating portion 21 has a free end cantilevered above the resisting block 126 when the modular plug 3 is inserted into the receiving cavity 100.
When the modular plug 2 is inserted into the receiving cavity 100 of the insulative housing 10, the mating portion 21 of the contact 20 is bent towards the resisting block 126, with a lower surface of the mating portion 21 attached along the curved surface 122 of the resisting block 126. Thus, a pressing force provided by the modular plug 2 is distributed equally along the mating portion 21, rather than concentrated on a certain portion of the mating portion 21. The contact 20 could be protected since it is hard to have an excessive deformation under the dispersed pressing force. In addition, the engagement between the contact 20 and the modular plug 2 is therefore reliable.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
Number | Date | Country | Kind |
---|---|---|---|
2007 2 0044126 | Sep 2007 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5310360 | Peterson | May 1994 | A |
5697817 | Bouchan et al. | Dec 1997 | A |
6022245 | Minich | Feb 2000 | A |
6176742 | Arnett et al. | Jan 2001 | B1 |
6257935 | Zhang et al. | Jul 2001 | B1 |
6368160 | Chang | Apr 2002 | B2 |
6402563 | Shi et al. | Jun 2002 | B1 |
6416364 | Shi et al. | Jul 2002 | B1 |
6497588 | Scharf et al. | Dec 2002 | B1 |
6554638 | Hess et al. | Apr 2003 | B1 |
6579128 | Wu | Jun 2003 | B1 |
7314387 | Liu et al. | Jan 2008 | B1 |
7591688 | Wang | Sep 2009 | B2 |
7637780 | Schoene et al. | Dec 2009 | B2 |
20090258545 | Pepe et al. | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090081907 A1 | Mar 2009 | US |