The present invention relates to electrical connectors, and more particularly to female connectors having a spring contact for electrically interfacing a male blade terminal. Still more particularly, the present invention relates to an electrical connector having a dual contact function spring contact.
In the electrical arts, it has been the practice to provide a selectively separable electrical connection between first and second electrical circuits by mutually interfacing first and second electrical connectors, each being respectively connected to the first and second electrical circuits. In this regard, of particular interest are box-shaped electrical connectors having an internally disposed resilient spring contact terminal for engaging a male mating blade connector when the latter is inserted into the electrical connector. An interesting example of such an electrical connector is recounted in U.S. Pat. No. 5,281,175.
Electrical connectors having spring contact terminals perform well to provide electrical connection with respect to an inserted male blade terminal; however, certain deficiencies are present. For example, should the spring contact terminal become deformed (as for example because a male blade terminal was, itself, bent and then insertionally forced so as to thereby cause the deformation), then there is some likelihood that the electrical connection between the spring contact terminal and the male blade terminal will fail.
Accordingly, it would be most desirable if an electrical connector could be devised wherein the spring contact terminal thereof could be insensitive to deformation by somehow providing a dual contact function to the spring terminal contact.
The present invention is an electrical connector having disposed therewithin a spring contact terminal which is insensitive to deformation by providing a dual contact function thereto.
The improved electrical connector according to the present invention includes an electrical conductor body having a general box-shape terminal cavity defined by an upper wall, a lower wall and a pair of sidewalls, wherein internally disposed is at least one dual contact function spring contact terminal.
A dual contact function spring contact terminal originates at a primary nose formed integrally of either the upper or the lower wall, at the entry port of the electrical conductor body. At the primary nose, an arm is integrally formed of the conductor body which bends 180 degrees so as to form an initial arm portion disposed within the terminal cavity and extending, in spaced relation from the subject upper or lower wall, rearwardly from the primary nose in parallel relation to the subject upper or lower wall. A contact portion of the arm is generally medially disposed within the terminal cavity via a primary spring of the arm which spans between the initial portion and a forward end of the contact portion of the arm. At the opposite, rearward end of the contact portion of the arm is a secondary nose formed of the arm so as to provide a 180 degree bend therein. Connected to the secondary nose is a secondary spring of the arm which bends toward, and contacts, at a terminus thereof, the subject upper or lower wall. Disposed in opposition to the contact portion of the arm is a terminal contact formed of the electrical conductor body (this may be alternatively in another embodiment, simply the contact portion of the arm of another dual contact function spring contact terminal).
In operation, a male blade terminal is inserted into the electrical conductor body of the electrical connector, wherein, as the male blade terminal is inserted, it abuts the primary spring and the opposing terminal contact, causing the primary spring to resiliently bend toward the subject upper or lower wall. As insertion of the male blade terminal continues, the male blade terminal slides further along the contact portion of the arm and the opposing terminal contact, and the secondary spring also becomes resiliently bent toward the subject upper or lower wall. Upon full insertion of the male blade terminal, the male blade terminal is in good electrical contact with the contact portion of the arm and the terminal contact as a result of the dual spring action of the primary and secondary springs.
The primary spring and the secondary spring perform independently of each other. Accordingly, in the event the primary spring should become damaged, as for example if the male blade terminal untowardly bent the primary spring, then the secondary spring will function normally and independently of the primary spring so as to provide excellent electrical contact of an inserted male blade terminal with the contact portion of the arm and the opposing terminal contact.
To provide better facilitation of various thicknesses of male blade terminals, it is preferred to include a relief spring formed in the subject upper or lower wall where the arm terminus abuts the subject upper or lower wall. In this regard, if a male blade terminal thicker than a predetermined thickness is inserted into the conductor body cavity, the incremented secondary spring tension is relieved by resilient bending of the relief spring.
In another, preferred form of the present invention (mentioned briefly hereinabove), a pair of dual contact function spring contact terminals is provided. An upper dual contact function spring contact terminal is formed of an upper arm via an upper primary nose, and a lower dual contact function spring contact terminal is formed of a lower arm via a lower primary nose, wherein the upper and lower arms are mirrors of each other.
Accordingly, it is an object of the present invention to provide an electrical connector having disposed therewithin at least one dual contact function spring contact terminal, wherein primary and secondary springs thereof function independently of each other.
This and additional objects, features and advantages of the present invention will become clearer from the following specification of a preferred embodiment.
Referring now to the Drawing,
Referring now to the first embodiment depicted at
The electrical conductor body 104 has a general box-shape, forming therewithin a terminal cavity 110 defined by an upper wall 112, an oppositely disposed lower wall 114 and a pair of mutually opposed sidewalls 116, 118, wherein internally disposed are upper and lower dual contact function spring contact terminals 102, 102′.
The upper dual contact function spring contact terminal 102 is composed of an upper arm 124 originating at an upper primary nose 120 that is formed integrally of the upper wall 112 at an entry port 122 of the electrical conductor body 104. At the upper primary nose 120, the upper arm 124 is integrally formed of the electrical conductor body 104 which bends 180 degrees so as to form an initial upper arm portion 126 disposed within the terminal cavity 110 and extending, in close spaced relation from the upper wall 112, rearwardly from the upper primary nose in parallel relation to the upper wall.
An upper contact portion 128 of the upper arm 124 is generally medially disposed within the terminal cavity 110 via an upper primary spring 130 of the upper arm which spans between the initial upper arm portion 126 and a forward end of the upper contact portion 128 of the upper arm. Resiliency of the upper primary spring 130 may be enhanced by preferably providing a centrally disposed upper primary spring slot 132 formed thereat in the upper arm.
At the opposite, rearward end of the upper contact portion 128 of the upper arm 124 is an upper secondary nose 134 formed of the upper arm so as to provide a 180 degree bend therein. Extending from the upper secondary nose 134 is an upper secondary spring 136 of the upper arm which bends toward, and contacts at an upper arm terminus 124a of the upper arm, the upper wall 112. Resiliency of the upper secondary spring 136 may be adapted to suit a particular application, if desired, by providing a centrally disposed upper secondary spring slot or by widening or narrowing the upper arm thereat.
To provide better facilitation of various thicknesses of male blade terminals (as discussed further hereinbelow), it is preferred to include an upper relief spring 140 formed in the upper wall 112 where the upper arm terminus 124a abuts the upper wall. In this regard, if a male blade terminal thicker than a predetermined thickness is inserted into the conductor body cavity, then the incremented secondary spring tension is relieved by resilient bending of the upper relief spring.
The lower dual contact function spring contact terminal 102′ is composed of a lower arm 124′ originating at a lower primary nose 120′ formed integrally of the lower wall 114 at the entry port 122 of the electrical conductor body 104. At the lower primary nose 120′, the lower arm 124′ is integrally formed of the conductor body 104 which bends 180 degrees so as to form an initial lower arm portion 126′ disposed within the terminal cavity 110 and extending, in closely spaced relation from the lower wall 114, rearwardly from the lower primary nose in parallel relation to the lower wall.
A lower contact portion 128′ of the lower arm 124′ is generally medially disposed within the terminal cavity 110 via a lower primary spring 130′ of the lower arm which spans between the initial lower arm portion 126′ and a forward end of the lower contact portion 128′ of the lower arm. The upper and lower contact portions 128, 128′ are disposed in mutually opposing relation. Resiliency of the lower primary spring 130′ may be enhanced by preferably providing a centrally disposed lower primary spring slot 132′ formed thereat in the lower arm.
At the opposite, rearward end of the lower contact portion 128′ of the lower arm 124′ is a lower secondary nose 134′ formed of the lower arm so as to provide a 180 degree bend therein. Extending from the lower secondary nose 134′ is a lower secondary spring 136′ of the lower arm which bends toward, and contacts at the lower arm terminus 124a′ of the lower arm, the lower wall 114. Resiliency of the lower secondary spring 136′ may be adapted to suit a particular application, if desired, by providing a centrally disposed upper secondary spring slot or by widening or narrowing the lower arm thereat.
To provide better facilitation of various thicknesses of male blade terminals (as discussed further hereinbelow), it is preferred to include a lower relief spring 140′ formed in the lower wall 114 where the lower arm terminus 124a′ abuts the lower wall. In this regard, if a male blade terminal thicker than a predetermined thickness is inserted into the conductor body cavity, then the incremented secondary spring tension is relieved by resilient bending of the lower relief spring.
Referring now additionally to
Referring firstly to
To provide better facilitation of various thicknesses of male blade terminals, the upper and lower relief springs 140, 140′ deform when a male blade terminal greater than a predetermined thickness is inserted into the electrical connector in order to prevent over forcing of the upper and lower secondary springs 136, 136′. For example, if the male blade terminal 200 of
In the event one of the upper and lower primary springs 130, 130′ should become damaged, or both become damaged for that matter, then its respective still undamaged upper or lower secondary spring 136, 136′ will function normally and independently of the damaged upper or lower primary spring so as to continue to provide excellent electrical contact of inserted male blade terminal with the upper and lower dual contact function spring contact terminals 102, 102′, and, as a consequence, with the electrical conductor body 104. As shown by way of example at
Referring now to the second embodiment depicted at
The electrical conductor body 104′ has a general box-shape, forming therewithin a terminal cavity 110′ defined by an upper wall 112′, an oppositely disposed lower wall 114′ and a pair of mutually opposing sidewalls 116′, 118′, wherein internally disposed is a single dual contact function spring contact terminal 102″ integral with the upper wall 112′. A terminal contact 150 is formed in the terminal cavity 100′ in integral connection to the lower wall 114′ and in opposite disposition relative to the dual contact function spring contact terminal 102″. It is to be understood that the dual contact function spring contact terminal 102″ shown in
The dual contact function spring contact terminal 102″ is composed of an arm 124″ originating at a primary nose 120′ formed integrally of the upper wall 112′ at an entry port 122′ of the electrical conductor body 104′. At the primary nose 120″, the arm 124″ is integrally formed of the conductor body 104′ which bends 180 degrees so as to form an initial arm portion 126″ disposed within the terminal cavity 110′ and extending, in closely spaced relation from the upper wall 112′, rearwardly from the primary nose in parallel relation to the upper wall.
A contact portion 128″ of the arm 124″ is generally medially disposed within the terminal cavity 110′ via a primary spring 130″ of the arm which spans between the initial arm portion 126″ and a forward end of the contact portion 128″ of the arm. Resiliency of the primary spring 130″ may be enhanced by a preferably provided centrally disposed primary spring slot 132″ formed thereat in the arm.
At the opposite, rearward end of the contact portion 128″ of the arm 124″ is a secondary nose 134″ formed of the arm so as to provide a 180 degree bend therein. Extending from the secondary nose 134″ is a secondary spring 136″ of the arm which bends toward, and contacts at the arm terminus 124a″ of the arm, the upper wall 112′. Resiliency of the secondary spring 136″ may be adapted to suit a particular application, if desired, by providing a centrally disposed upper secondary spring slot or by widening or narrowing the arm thereat.
To provide better facilitation of various thicknesses of male blade terminals (as discussed further hereinbelow), it is preferred to include a relief spring 140″ formed in the upper wall 112′ where the arm terminus 124a″ abuts the upper wall. In this regard, if a male blade terminal thicker than a predetermined thickness is inserted into the conductor body cavity, then the incremented secondary spring tension is relieved by resilient bending of the relief spring 140″.
The terminal contact 150 is disposed within the connector cavity opposite the dual function spring terminal. The terminal contact 150 is composed of a second arm 150a originating at a second nose 120′″ formed integrally of the lower wall 114″ at the entry port 122′ of the electrical conductor body 104′ and extends rearwardly therefrom. The terminal contact 150 is opposingly disposed relative to the contact portion 128″.
Various aspects of operation of the electrical conductor 100′ will now be discussed.
As shown at
To provide better facilitation of various thicknesses of male blade terminals, the relief spring 140″ deforms when a male blade terminal thicker than a predetermined thickness is inserted into the electrical connector in order to prevent over forcing of the secondary spring.
In the event the primary spring 130″ should become damaged, as for example by being bent as shown at
With respect to the foregoing exemplary description of the preferred embodiments 100100′, it will be understood that a number of advantages pertain to the present invention, including:
The primary and secondary springs of each dual contact function spring contact terminal provide resilient location of the contact portion of the arm independent of each other.
Various thicknesses of male blade terminals are accommodated, which eliminates need for different sized electrical connectors for differing sized male blade terminals.
The configuration of the dual contact function spring contact terminals is robust with respect to accommodation of misaligned male blade terminals, is tolerance insensitive, and obviates the need for lubricants.
The spring stiffness of the dual contact function spring contact terminals can be easily modified using the same basic shape so as to achieve desired engagement and normal force properties.
An electrical conductor can be made using any number of dual contact function spring contact terminals.
The terminal contact will compliantly follow the surface movement of the male blade terminal, and the electrical contact therebetween is vibration insensitive.
Over-stress of the dual contact function spring contact terminals is prevented by operation of the relief springs. In this regard, the relief springs provide a substantial constancy to the normal forces over a range of male blade terminal thicknesses. The normal force increases during the insertion process of the male blade terminal, accordingly, a low engagement force occurs, while yet a high normal force is provided. In this regard, the normal force is primarily provided by the secondary spring and the secondary nose. In simulation testing, a failure of the primary spring does not cause failure of the normal force, as the secondary spring carries most of the load. By way of exemplification using an electrical connector 100, a 0.64 mm. thick male blade terminal may have a maximum engagement force of 2.35 N and a maximum normal (contact) force of 7.0 N, whereas a 0.80 mm. thick male blade terminal may have a maximum engagement force of 3.45 N and a maximum normal (contact) force of 8.4 N; it is seen in this example that the difference in thickness results in an approximately 1.4 Newton normal force difference.
The dual contact function spring contact terminals may be utilized with symmetric or non-symmetric male blade terminals (non-symmetric possibly providing a reduced size dual contact function spring contact terminal). The dual contact function spring contact terminal is robust with regard to non-conforming male blade terminals vis-a-vis the primary nose and compliancy of the contact portion thereof with respect to an inserted male blade terminal.
To those skilled in the art to which this invention appertains, the above described preferred embodiment may be subject to change or modification. Such change or modification can be carried out without departing from the scope of the invention, which is intended to be limited only by the scope of the appended claims.