The present disclosure is generally directed to electrical connectors. More particularly, the connectors disclosed herein have terminal position assurance (TPA) elements. Specifically, the present disclosure is directed to TPA connectors having a finger-actuated retainer.
TPA connectors have been developed primarily to ensure the proper seating of terminals installed within the cavities of the connector housing usually by the end user. Improper seating of a terminal in the cavity may occur if the terminal is not fully inserted into the housing during the assembly of the connector. Typically, TPA connectors allow one to determine whether the inserted terminal has been properly seated. TPA connectors also secure these terminals in a position for mating with the contacts of a complementary connector or other electrical device. Also, TPA connectors can be locked to maintain the integrity of the terminal connections against vibrations and other jarring motions. Accordingly, TPA connectors have found considerable use in the automotive industry.
TPA connectors typically include a connector body having cavities for accepting terminals, and a retainer. Such TPA connectors usually are provided to end users with the retainer joined with the connector body as a single unit but with the retainer not fully locked to the connector body. In other words the. TPA connector is provided in a pre-lock state. The end user can then insert the individual terminals into the respective cavities of the connector body. Each cavity of the connector body can have a latching arm which is deflected by the terminal as it passes into the cavity. Once the terminal is fully inserted, the resilient latching arm rebounds back to its initial position and latches behind a shoulder or other terminal surface to secure the terminal in the cavity.
After all the terminals have been inserted into their respective cavities, the retainer can be pressed into a fully locking position. The retainer has finger members sized to fit behind the latching arms to prevent the latching arms from being deflected out of the latched position against the terminal. The retainer can also have deflectable locking arms for engaging posts on the connector body to lock the retainer to the connector body when the retainer is moved to the fully locked position.
Generally, once the retainer is fully locked to the connector body, a tool is required to move the retainer back to the pre-lock state. While this is advantageous to prevent accidental disengagement, it presents difficulties, such as creating delays in the assembly process, when the retainer is accidentally or inadvertently moved to the fully locked state prior to insertion of the terminals. Inadvertent locking of the retainer is known to happen on occasion during transport of the TPA connectors.
In order to minimize or prevent inadvertent locking of the retainer to the connector body, TPA connectors have been provided with levered locking arms which abut stop members to impede the retainer from moving to the fully locked position. In order to fully lock the retainer, the user must actively press one end of the levered locking arms to pivot the opposite ends outward. This disengages the locking arms from the stop member and allows the retainer to move to the fully locked position.
Such TPA connectors with levered locking arms, however, result in the ends of the arms pivoting outward from the connector body which increase the space requirement for the TPA connector. In addition, outwardly pivoting locking arms are prone to snagging nearby wires or other objects.
Accordingly, the present disclosure provides TPA connectors which resist inadvertent locking of the retainer and have a compact package. TPA connectors disclosed herein can require a large force to inadvertently move the retainer to a fully locked position while affording minimal effort to purposefully move the retainer to a fully locked position. Also, the locking arms of the present TPA connectors also resist snagging that can otherwise occur with TPA connectors having outwardly pivoting locking arms. Furthermore, TPA connectors according to the present disclosure can resist dismounting or separation of the retainer from the connector body.
In one embodiment according to the present disclosure, a connector is provided comprising a connector body and a retainer. The connector body has a connector mating end, a terminal entry end, a first lateral wall at one side of the connector body and a second lateral wall at an opposite side of the connector body, at least one cavity extending from the terminal entry end to the connector mating end for receiving a terminal and at least one post adjacent the terminal entry end and at one side of the connector body. The first and second lateral walls extend between the connector mating and terminal entry end, and the at least one post is spaced apart from the first lateral wall and has a stop surface. The retainer, which is mountable to the connector body for moving from a pre-lock position allowing insertion and removal of the terminal to a fully locked position for locking the terminal in the at least one cavity, has a face plate having one lateral side and an opposite lateral side, at least one cantilever locking arm extending in a locking direction from one lateral side of the face plate and has a projection extending from an outer surface thereof for engaging the at least one post to lock the retainer to the connector body. The at least one cantilever locking arm has a contact surface for engaging the stop surface of the at least one post wherein engagement of the contact surface with the stop surface restricts movement of the retainer from the pre-lock position to the fully locked position and wherein inward deflection of the at least one locking arm disengages the contact and stop surfaces to permit movement of the retainer to the fully locked position.
It is to be understood that the disclosed embodiment(s) are merely exemplary of the disclosure, which may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the inventive features herein disclosed in virtually any appropriate manner and combination.
Connector body 12 can have an upper row of cavities 20a aligned with a lower row of cavities 20b for receiving female terminals 22 (shown in
Terminals 22 shows in
Terminal 22 can be inserted in upper cavity 20a in direction A with opening 28 entering first. Latching arm 36 can extend in cavity 20a in direction A and can be spaced from wall 38 of the connector body 12 to define deflection space 40. Latching arm 36 can have ramped surface 42 opposite deflection space 40 such that insertion of terminal 22 in cavity 20a results in latching arm 36 being deflected towards deflection space 40 to permit terminal 22 to pass through cavity 20a. Once housing member 26 of terminal 22 passes engagement surface 44, terminal 22 can be properly seated and latching arm 36 can rebound to its initial position. Engagement surface 44 then blocks terminal 22 from being pulled back out of cavity 20a by engaging shoulder 34. It is understood that all of cavities 20a and 20b have the internal structures just described above except that lower row cavities 20b are inverted.
Retainer 14 shown separately in
As shown in
Retainer 14 and connector body 12 can have cooperating structures to fully lock retainer 14 to connector body 12 and permit unlocking or disengagement from the fully locked position to the pre-lock position. In addition, cooperating structures can be provided on retainer 14 and connector body 12 to prevent retainer 14 from complete separation from connector body 12 from the pre-lock position shown in
As shown in
Retainer 14 can also include spring arms 72, 74 for preventing the dismounting or separation of retainer 14 from connector body 12 as will be describe in more detail below. Spring arms 72, 74 can be formed from base 76, 78 of locking arms 52, 54, respectively. Each base 76, 78 can have a cutout region 80, 82 into which springs arms 72, 74 extend. Spring arms 72, 74 can be cantilevered to pivot toward and away from each other and can have bulged ends 84, 86 extending towards the interior of retainer 14. Surfaces 88, 90 of bulged ends 84, 86 can be beveled to rise in a direction towards face plate 46 as shown in
Moving to
Lateral wall 102 can have ramp 114 adjacent mating end 16 and have engagement face 116 for engaging bulging end 86 of spring arm 74 to prevent the dismounting of retainer 14 from connector body. Ramp 114 can rise from lateral wall 102 as it extends toward terminal end 18. Also, adjacent mating end 16 can be upper and lower brackets 118, 120 extending laterally beyond lateral wall 102 to define upper and lower channels 122, 124 for receiving wings 94, 95 and to assist in mounting retainer 14 to connector body 12.
When mounting retainer 14 to connector body 12, retainer 14 and connector body 12 are positioned such that face plate 46 of retainer 14 and terminal end 18 of connector body 12 are facing in opposite directions, Retainer 14 and connector body 12 are brought together and wings 92, 93 and 94, 95 can be passed through channels 120, 122. Wings 92, 93 also can be passed through channels duplicated on opposite lateral side 98. With continued movement of retainer 14 and connector body 12 towards each other as shown in
Further movement of retainer 14 and connector body 12 towards each other can occur until angled contact surface 70 of locking arm 54 contacts stop surface 112 of post 110 and angled contact surface 68 of locking arms 52 contacts the stop surface 112′ of post 110′. As shown in
The amount of force that can be resisted by engagement of surfaces 68, 70 with 112′, 112 can vary depending upon the angle at which these surfaces engage. For example, angle X between axis C and surface 68 can be greater than 90 degrees and angle Y between axis C and surface 112′ can be less than ninety degrees by an equal amount. These angles can be replicated for surfaces 70 and 112 respectively. As shown in
To fully lock retainer 14 to connector body 12, locking arms 52, 54 can be pressed inwardly towards connector body or towards each other by a squeezing or pinching motion of a thumb and forefinger at press points 126, 128 as shown by directions D, E, respectively in
To move from the fully locked position to the pre-locked position the steps need to be reversed. That is, locking arms 52, 54 can be pressed together until projections 64, 66 move out of engagement with posts 110′ 110 and retainer 14 can then be pulled in a direction opposite direction F. Continued movement in this direction can proceed until bulging ends 84, 86 engage ramps 114, 114′. In order to dismount retainer 14, spring arms 72, 74 can be pivoted out to disengage ramps 114, 114′ and bulging ends 84, 86.
It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages. It is, therefore, intended that such changes and modifications be covered by the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/083,923 filed on Jul. 26, 2008, the entirety of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/051836 | 7/27/2009 | WO | 00 | 5/9/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/014540 | 2/4/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5059142 | Ohta et al. | Oct 1991 | A |
5569055 | Yamanashi et al. | Oct 1996 | A |
5575692 | Cecil et al. | Nov 1996 | A |
5611712 | Morishita et al. | Mar 1997 | A |
6106340 | Myer et al. | Aug 2000 | A |
7066773 | Martin | Jun 2006 | B1 |
20070218780 | Onoda et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
195 38 613 | May 1996 | DE |
1 271 705 | Jan 2003 | EP |
2 684 242 | May 1993 | FR |
2 262 664 | Jun 1993 | GB |
Number | Date | Country | |
---|---|---|---|
20110207357 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
61083923 | Jul 2008 | US |