1. Field of the Invention
The present invention relates to an electrical connector, and more particularly to a USB (Universal Serial Bus) connector adapted for being normally and reversely mating with a mating connector and a method of making the same.
2. Description of Related Art
U.S. Pat. No. 8,684,769 issued on Apr. 1, 2014 discloses a socket connector and a mating plug connector. The socket connector includes an upper housing having an upper tongue, a set of upper contacts arranged upon the upper tongue, a lower housing having a lower tongue, a set of lower contacts arranged upon the lower tongue, and a shielding plate between the upper housing and the lower housing. The upper housing and the lower housing are then inserted into a bracket. The plug connector includes a plug housing having a pair of tongue portions for fixing two rows of plug contacts and a shielding sheet between the two rows of terminals.
It is hard to insert mold the contacts with the housing via molds or insert the contacts through the housing. Structurally the plug connector and the socket connector are not strong.
A strengthened and easily manufactured USB connector is desired.
Accordingly, an object of the present invention is to provide an electrical connector having a solid construction and easy to manufacture.
In order to achieve the object set forth, an electrical connector includes a shielding plate, a base portion insert molded with the shielding plate and defining two rows of passageways, two rows of terminals affixed to the base portion, and an insulative housing over molded with the base portion. The two rows of passageways extend in the base portion along a front-to-back direction, and exposed completely upwardly and downwardly, respectively. Each terminal includes a body portion accommodated in a corresponding passageway, a soldering portion, and a contacting beam having a contacting portion. The shielding plate is located between the two rows of terminals.
A method of manufacturing an electrical connector includes the steps of punching a shielding plate and two rows of terminals, insert molding a base portion on the shielding plate and defining two rows of passageways exposed completely upwardly and downwardly, assembling the terminals into the passageways, and over molding an insulative housing on the base portion. The base portion defines two rows of passageways accommodating the terminals and covered by the insulative housing.
The two rows of passageways extend in the base portion along the front-to-back direction and are exposed completely upwardly and downwardly. The terminals are easy to be assembled to the base portion. The step of over molding firmly fix the terminals and strengthen the construction of the electrical connector.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention. Referring to
The base portion 2 defines two rows of passageways 21 extending through the base portion 2 along a front-to-back direction and exposed completely upwardly and downwardly respectively for allowing assembling the terminals 3 along an top-to-bottom direction. The base portion 2 includes a pair of divided portions 22, 23 arranged along a front-to-back direction and a connecting portion 24 connecting with the pair of divided portions 22, 23. The connecting portion 24 is divided into upper and lower pieces to sandwich the shielding plate 1. Each divided portion 22, 23 is formed with two rows of ribs 25. Each passageway 21 is defined between two adjacent ribs 25. The connecting portion 24 is formed with a plurality of protrusions 26 and a plurality of recesses 27 alternating with the protrusions 26 and communicating with the passageways 21.
Each terminal 3 includes a body portion 32, a soldering portion 33 and a contacting beam 31 cantilevered forwardly from the body portion 32 and having a contacting portion 311. Each contacting portion 311 of one row of the terminals 3 projects toward corresponding contacting portion 311 of the other row of the terminals 3.
The insulative housing 4 comprises a pair of covering portions 41 covering on upper and lower faces of the base portion 2 for at least partially, better totally, covering the passageways 21. Each covering portion 41 has a projection 42 engaging with the passageways 21.
A method of manufacturing the electrical connector 100 comprises the steps of punching the shielding plate 1 and two rows of terminals 3, insert molding the base portion 2 on the shielding plate 1, and assembling the terminals 3 into the passageways 21 along the top-to-bottom direction, optionally along a front-to-back direction, after insert molding. Finally, the insulative housing 4 is over molded on the base portion 2 and at least partially, better totally, covering the passageways 21. Punching the terminals 3 could happen before or after the step of insert molding.
The shielding plate 1 is located between the two rows of the terminals 3. The shielding plate 1 has a front portion 11 extending forwardly from the base portion 2 and positioned between the two rows of contacting beams 31 of the terminals 3 and disposed behind the contacting portions 31. The shielding plate 1 has a tail 12 extending rearwardly from the base portion 2 and disposed between two rows of soldering portions 33.
The terminals 3 are easy to be assembled into the passageways 21. The step of insert molding and the step of over molding firmly fix the terminals 3 and strengthen the construction of the electrical connector 100.
Referring to
The shielding plate 1′ is formed with a pair of resisting portions 13′ and a tail 12′ extending rearwardly.
The base portion 2′ defines two rows of passageways 21′ extending along a front-to-back direction and exposed completely upwardly and downwardly respectively. The base portion 2′ is formed with two rows of ribs 25′. Each passageway 21′ is defined between two adjacent ribs 25′. The base portion 2′ has a pair of recesses 27′ defined at opposite sides thereof.
Each terminal 3′ includes a body portion 32′, a soldering portion 33′ and a contacting beam 31′ extending forwardly from the body portion 32′ and having a contacting portion 311′. The contacting portion 311′ of upper row of the terminals 3′ exposed upwardly. The contacting portion 311′ of lower row of the terminals 3′ exposed downwardly. Punching the terminals 3′ could happen before or after the step of insert molding.
The insulative housing 4′ comprises a rear portion 44′ and a flat front portion 45′ extending forwardly from the rear portion 44′. The rear portion 44′ and a flat front portion 45′ is formed into a stepped configuration.
A method of manufacturing the electrical connector 100′ comprises the steps of punching the shielding plate 1′ and two rows of terminals 3′, insert molding the base portion 2′ on the shielding plate 1′, and assembling the terminals 3′ into the passageways 21′ along either top-to-bottom direction (preferably) or front-to-back direction after insert molding. Finally, the insulative housing 4′ is over molded on the base portion 2′ together with the terminals 3′.
The pair of resisting portions 13′ of the shielding plate 1′ are exposed outwardly from the recesses 27′ to latch with corresponding structures of a mating connector for grounding. The tail 12′ of the shielding plate 1′ extends rearwardly from the insulative housing 4′.
Referring to
Referring to
Referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
103116171 A | May 2014 | TW | national |
103116173 A | May 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6409543 | Astbury et al. | Jun 2002 | B1 |
7097506 | Nakada | Aug 2006 | B2 |
7682199 | Ahn et al. | Mar 2010 | B2 |
8052461 | Wang | Nov 2011 | B2 |
8109795 | Lin et al. | Feb 2012 | B2 |
8262411 | Kondo | Sep 2012 | B2 |
8461465 | Golko et al. | Jun 2013 | B2 |
8684769 | Kao et al. | Apr 2014 | B2 |
8784134 | Wu et al. | Jul 2014 | B2 |
8794981 | Rodriguez et al. | Aug 2014 | B1 |
20130117470 | Terlizzi et al. | May 2013 | A1 |
20130330976 | Simmel et al. | Dec 2013 | A1 |
20150171562 | Gao | Jun 2015 | A1 |
20150244110 | Ju | Aug 2015 | A1 |
20150325957 | Liao et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
203193000 | Sep 2013 | CN |
M253969 | Dec 2004 | TW |
Number | Date | Country | |
---|---|---|---|
20150325951 A1 | Nov 2015 | US |