The present application claims priority under 35 U.S.C. § 119 to Taiwan Application No. 110204288 filed in the Taiwan Patent Office on Apr. 19, 2021, the entire contents of which is incorporated herein by reference.
The present disclosure relates to an electrical connector and, in particular, a robust electrical connector having a versatile configuration that is able to provide a reliable and secure connection to reversible mating connectors (e.g., mating connectors that mate in two different orientations) as well as to non-reversible mating connectors (e.g., mating connectors that mate in only a single orientation). The electrical connector may be compact in size and may be a board-type connector configured to be mounted on a circuit board and to connect a mating connector to the circuit board.
In order to be able to receive and/or transmit electrical signals and power, electronic devices of all kinds (e.g., smartphones, tablet computers, desktop computers, notebook computers, digital cameras, etc.) have used electrical connectors. For example, to receive and/or transmit electrical signals and/or power from an external device, an electronic device may utilize an electrical connector to interconnect the devices. In another example, to receive and/or transmit signals within an electronic device, e.g., between circuit boards located at different regions of the electronic device, an electrical connector that fits within the electronic device's body may be utilized. In general, the term “electrical connector” may refer broadly to all devices for connecting elements together and carrying electrical signals and/or power between the connected elements.
An electrical connector may be a bridge for transferring signals to/from key components of an electronic device. Therefore, the quality of the electrical connector may affect the reliability of electrical transmissions (e.g., current, power, signals), and such reliability may be closely linked to reliability of operation of the electronic device. Further, because electrical connectors may function to interconnect multiple electronic devices to form a complete system, reliable operation of an entire system may be affected by the reliability of any one or more of the system's electrical connectors. Thus, it can be seen that electrical connectors that operate reliably are elements that are indispensable to electronic devices and that enable electronic devices to carry out their predetermined functions.
Electrical connectors may have many different types of structures, which have been adapted to accommodate the variety of different uses and/or mounting positions demanded by the electronic devices in which the signal connectors are deployed. For example, when a main unit of an electronic device (e.g., desktop computer, servo, on-board computer, etc.) has a relatively large volume, or when a mounting position is complex or concealed, manufacturers may opt to use a wired connector-design structure so that the bendable property of wires can be used advantageously to enable flexibility in the length(s) of the wire(s) used to connect an electronic device to another electronic device reliably. When available space is not a concern, the use of wires may provide flexibility in enabling interconnection of a component (e.g., a circuit board) in the electronic device to another component in the electronic device or in other electronic device, so as to be enable signal and/or power transmission between the components.
However, as designs of electronic devices of all kinds become more and more compact and lightweight, the structures of electrical connectors of all types have become more and more compact and lightweight, and consequently the features of the electrical connectors have become more and more precise. As the size of electrical connectors of all types becomes smaller and more precise, a concern is that the structural strength of these electrical connectors could be weakened, i.e., they could become more fragile, which could affect their transmission performance by increasing the possibility of an unstable connection. An additional concern is that, with their increased fragility, the service life of the electrical connectors could be shortened by incorrect handling. For example, in the process of plugging and unplugging a conventional electrical connector (especially in blind plugging operations), a user could apply force improperly or there could be a deviation from a correct direction or orientation when force is applied during plugging. Such erroneous handling could cause deformation and damage to an insulating body or housing of the connector. Thus, solving the question of how to effectively avoid the abovementioned problems is an important task.
With an understanding of the challenges of conventional electrical connectors and the need for improvement, and also with an understanding of the concerns of a fiercely competitive market, the inventor has conducted extensive research and experimentation to develop an electrical connector having symmetrical docking holes that, in some implementations, may be used advantageously to minimize the adverse effects of the problems and challenges mentioned above.
According to an aspect of the present invention, an electrical connector is provided that may be comprised of an insulating body, a terminal set, and a housing. The insulating body may be comprised of an accommodating space and a plug-in port arranged on a top side of the insulating body. The plug-in port may be in communication with the accommodating space. The terminal set may be comprised of a plurality of metal terminals fitted in a portion of the insulating body such that top portions of the metal terminals may be exposed to the accommodating space of the insulating body. The housing may be comprised of a plurality of walls defining an assembly space, with the walls of the housing being configured to surround external or outward-facing surfaces of the insulating body. The walls of the housing may be comprised of front and rear walls facing front and rear external surfaces of the insulating body, respectively. A portion of the front wall of the housing may be spaced apart from the front external surface of the insulating body to form a first docking slot in the assembly space. A portion of the rear wall of the housing may be spaced apart from the rear external surface of the insulating body to form a second docking slot in the assembly space. The front wall of the housing may be comprised of a plurality of front docking holes in communication with the first docking slot, and the rear wall of the housing may be comprised of a plurality of rear docking holes in communication with the second docking slot.
In some embodiments of this aspect, the housing may be comprised of at least one first snap-fit part located on the front wall or on the rear wall of the housing, and at least one second snap-fit part located on a left wall of the housing or on a right wall of the housing or on each of the left and right walls of the housing. The insulating body may be comprised of at least one third snap-fit part configured to engage with the at least one first snap-fit part of the housing when the insulating body is in an assembled or mated position with the housing, and at least one fourth snap-fit part configured to engage with the at least one second snap-fit part of the housing when the insulating body is in the assembled or mated position with the housing.
In some embodiments of this aspect, the housing may be comprised of at least one first guide part and at least one second guide part extending from the front wall of the housing or from the rear wall of the housing or from each of the front and rear walls of the housing, and at least one third guide part extending from a left wall of the housing or from a right wall of the housing or from each of the left and right walls of the housing. The first, second, and third guide parts may each be curved to form an inclined face that curves outwards and away from the assembly space, with the inclined faces being configured to guide a mating connector into the accommodating space of the insulating body.
In some embodiments of this aspect, the insulating body may be comprised of a terminal holding part that protrudes from a base of the insulating body into the accommodating space of the insulating body. The terminal holding part may be an island that is separated from an inner surface of the insulating body by the accommodating space. The terminal holding part may be comprised of a terminal holding space configured to receive the terminal set such that, when the terminal set is positioned in the terminal holding space, the terminal set extends into the insulating body from the base of the insulating body.
In some embodiments of this aspect, the front wall of the housing may be comprised of left and right regions separated by a central region. The left and right regions of the front wall may have a first height that is different from a second height of the central region of the front wall. The first and second heights of the front wall may extend from a bottom edge of the front wall of the housing. In some implementations, the second height may be less than the first height of the front wall, such that in a front elevational view the central region of the front wall may appear sunken.
In some embodiments of this aspect, the rear wall of the housing may be comprised of left and right regions separated by a central region. The left and right regions of the rear wall may have a first height that is different from a second height of central region of the rear wall. The first and second heights of the rear wall may extend from a bottom edge of the rear wall of the housing. In some implementations, the second height may be less than the first height of the rear wall, such that in a rear elevational view the central region of the rear wall may appear sunken.
In some embodiments of this aspect, a distance between a top edge of the first guide part of the front wall of the housing and a bottom edge of the front wall of the housing may be the first height of the front wall of the housing.
In some embodiments of this aspect, a distance between a top edge of the first guide part of the rear wall of the housing and a bottom edge of the rear wall of the housing may be the first height of the rear wall of the housing.
In some embodiments of this aspect, a distance between a top edge of the second guide part of the front wall of the housing and a bottom edge of the front wall of the housing may be the second height of the front wall of the housing.
In some embodiments of this aspect, a distance between a top edge of the second guide part of the rear wall of the housing and a bottom edge of the rear wall of the housing may be the second height of the rear wall of the housing.
In some embodiments of this aspect, the terminal set may be comprised of a terminal fixing seat and a terminal base to which the metal terminals are fixed. The terminal base may be comprised of at least one base-positioning space and at least one base-positioning unit. The terminal fixing seat may be comprised of at least one fixing-seat-positioning space and at least one fixing-seat-positioning unit configured such that, when the terminal base and the terminal fixing seat are fitted together, the at least one base-positioning unit may extend into the at least one fixing-seat-positioning space, and the at least one fixing-seat-positioning unit may extend into the at least one base-positioning space.
In some embodiments of this aspect, the front docking holes may be symmetrically positioned relative to the rear docking holes. For example, the rear docking holes may be symmetrically positioned relative to the front docking holes such that each front docking hole is aligned with a corresponding rear docking hole along a common line extending orthogonally through a midplane of the housing.
According to another aspect of the present invention, an electrical connector is provided that may be comprised of an insulating body and a housing. The insulating body may be comprised of an accommodating space and an island extending into the accommodating space from a bottom surface of the insulating body. The housing may be comprised of a plurality of walls defining an assembly space. The walls of the housing may be configured to surround external surfaces of the insulating body. In some implementations, the walls of the housing may be comprised of first and second walls facing first and second external surfaces of the insulating body, respectively. A portion of the first wall of the housing may be spaced apart from the first external surface of the insulating body to form a first docking slot in the assembly space. A portion of the second wall of the housing may be spaced apart from the second external surface of the insulating body to form a second docking slot in the assembly space. The first wall of the housing may be comprised of a plurality of first docking holes in communication with the first docking slot. The second wall of the housing may be comprised of a plurality of second docking holes in communication with the second docking slot.
In some embodiments of this aspect, the insulating body may be comprised of a first wall, a plurality of first protrusions extending outward from the first wall, a second wall, and a plurality of second protrusions extending outward from the second wall.
In some embodiments of this aspect, a perimeter of the first docking slot may be defined by the first wall of the insulating body, the first protrusions of the insulating body, and the first wall of the housing, and a perimeter of the second docking slot is defined by the second wall of the insulating body, the second protrusions of the insulating body, and the second wall of the housing.
In some embodiments of this aspect, the housing may be comprised of at least one first snap-fit part located on the second wall of the housing. The insulating body may be comprised of at least one third snap-fit part configured to engage with the at least one first snap-fit part of the housing when the insulating body is in a mated position with the housing.
In some embodiments of this aspect, the housing may be comprised of at least one second snap-fit part located on a third wall of the housing or on each of the third wall and a fourth wall of the housing. The insulating body may be comprised of at least one fourth snap-fit part configured to engage with the at least one second snap-fit part of the housing when the insulating body is in the mated position with the housing.
In some embodiments of this aspect, the first docking slot may have a first dimension in a lengthwise direction, the second docking slot may have a second dimension in the length wise direction, with the first dimension being different from the second dimension. In some implementations, the first dimension may be greater than the second dimension.
In some embodiments of this aspect, the first docking holes may be symmetrically positioned relative to the second docking holes.
The foregoing features may be used, separately or together in any combination, in any of the aspects and embodiments of the invention discussed herein.
Various aspects and embodiments of the present technology disclosed herein are described below with reference to the accompanying drawings. It should be appreciated that the figures shown in the drawings are not necessarily drawn to scale. Items appearing in multiple figures may be indicated by the same reference numeral. For the purposes of clarity, not every component may be labeled in every figure.
The inventor has recognized and appreciated various design techniques for electrical connectors that enable an electrical connector (e.g., a receptacle connector) to connect with a mating connector (e.g., a plug connector) such that the mated pair occupies a small volume while providing reliable operation for high-integrity signal interconnects. Although the electrical connector may be relatively compact in size, proper connection of the electrical connector with the mating connector may be made easily and reliably by a user due to design features that make the electrical connector robust and user-friendly as well as compact. The robustness and ease of use of the electrical connectors according to various embodiments of the present invention may provide users with a level of assurance that routine mating operations will be unlikely to cause damage. For example, in some embodiments, features of the electrical connector may minimize or prevent misalignment and/or may enable users to easily ascertain that the electrical connector is properly aligned before a mating force is applied to seat the electrical connector and the mating connector in a mated position.
The inventor has further recognized and appreciated that compact electrical connectors may be more likely to be damaged by some forces than other forces as a result of their miniaturized size. For example, in mating a plug connector with a receptacle connector, although it may be preferred to have a force be applied in a direction parallel to an axial direction of the receptacle connector, in practice, however, a user may not pay special attention to an angle at which the plug connector is oriented with respect to the receptacle connector, or the location of the receptacle connector may be such that user may not be able to see whether the angle at which the plug connector is oriented is aligned with the axial direction of the receptacle connector. Thus, the receptacle connector may be subjected to an applied external force that is not parallel to the axial direction of the receptacle connector. Such off-axis forces can impact the receptacle connector in ways that impact the integrity of signals passing through the receptacle connector. Off-axis forces, for example, may cause the receptacle connector to tilt. In some situations, an off-axis force may be sufficient to break solder joints connecting metal terminals of the receptacle connector to a PCB. In other scenarios, an off-axis force may deform the metal terminals, shift their positions, or otherwise alter their signal paths through the receptacle connector in ways that degrade the integrity of signals passing through the receptacle connector.
Damage may also result if a user attempts to press the plug connector into the receptacle connector with the wrong orientation or with the plug connector misaligned (e.g., laterally shifted) with respect to the receptacle connector. For example, when a user attempts to insert a misaligned plug connector, the receptacle connector may be subjected to a large force, such as 55 N or more. In addition to the potential damage to the solder connections of the metal terminals, discussed above, the force may be sufficient to deform or break one or more portions of an insulating body of the receptacle connector, including a portion bounding a receiving portion in which the plug connector is to be seated when properly mated with the receptacle connector. The receptacle connector may then cease to be able to hold the plug connector snugly and reliably, thus creating the possibility of intermittent disconnection between the plug and receptacle connectors. Consequently, the receptacle connector may lose its functionality and, in turn, normal operation of an electronic device employing the receptacle connector may cease.
The above-noted risks of damage are greater for compact connectors, such as those with metal terminals spaced, center to center, at 0.6 mm or less, such as connectors with a terminal spacing of 0.5 mm or less, or 0.4 mm or less, or 0.35 mm or less.
Some aspects of the present technology described herein may reduce or eliminate the possibility of improper orientation of a plug connector during a mating operation with a receptacle connector. Some aspects may reduce or eliminate the possibility of misalignment between the plug and receptacle connectors. Some aspects may minimize or eliminate the application of damaging forces during a mating operation.
The inventor has recognized that at times an electrical connector may need to be reliably and securely connected to some mating connectors in any of two reversible orientations and at other times the electrical connector may need to be reliably and securely connected to some other mating connectors in only a single orientation. For example, the electrical connector may be connected to a first type of mating connector with a front surface of the first type of mating connector facing frontward or facing rearward, and the same electrical connector may be connected to a second type of mating connector with only a front surface of the second type of mating connector facing frontward.
Turning now to the drawings,
The electrical connector 1 may be comprised of a housing 2, an insulating body 3, and a terminal set 4. To facilitate an explanation of various elements of the electrical connector 1, bottom left areas of the housing 2, the insulating body 3, and the terminal set 4 in
Referring to
The housing 2 may be comprised of at least one docking hole 20 located in each of a front wall and a rear wall of the housing 2, as shown in
According to some embodiments of the present invention, symmetry of the docking holes 20 is such that, when the housing 2 is rotated 180° about a central vertical axis C, the docking holes 20 in the front wall are rotated to the locations of the docking holes 20 in the rear wall prior to the rotation, and the docking holes 20 in the rear wall are rotated to the locations of the docking holes 20 in the front wall prior to the rotation.
Each of the docking holes 20 may be in communication with the assembly space 26. In some embodiments, the docking holes 20 may be configured to engage with protrusions on a mating connector such that, when the electrical connector 1 is in a mated position with the mating connector, the protrusions on the mating connector extend into and are lodged in the docking holes 20, such that a position of the mating connector relative to the electrical connector 1 may be set. For example, the docking holes 20 may be configured to engage with protruding bumps 602 on docking legs 604, 606 of the plug connector 600.
The housing 2 may be comprised of at least one first snap-fit part 21 provided at the front wall or at the rear wall of the housing 2. In
The housing 2 may be comprised of at least one first guide part 23 and at least one second guide part 24 provided at the front wall and/or at the rear wall of the housing 2. In some embodiments of the present invention, the first and second guide parts 23, 24 may be located at top end portions of the front wall and/or top end portions of the rear wall of the housing 2. In
The housing 2 may be comprised of at least one second snap-fit part 22 provided at a left wall and/or a right wall of the housing 2. In
The housing 2 may be comprised of at least one third guide part 25 provided at the left wall and/or the right wall of the housing 2. In some embodiments of the present invention, one or more third guide part(s) 25 may be located at a top end portion of the left wall and/or a top end portion of the right wall of the housing 2. In
Each of the first, second, and third guide parts 23, 24, 25 may be comprised of a top edge portion of the housing 2 that is bent or formed to curve outwards or away from the assembly space 26. Such curvature of the first, second, and third guide parts 23, 24, 25 may guide a user in a mating operation of the electrical connector 1 with a mating connector. For example, during a blind vertical mating operation, the user may be able to feel the curvature of one or more of the first, second, and third guide parts 23, 24, 25 and use the curvature to guide a downward sliding movement of the mating connector relative to the electrical connector 1 to achieve a proper engaged or mated position.
In some embodiments of the present invention, a central region of the front wall of the housing 2 may be shorter in height than left and right end regions of the front wall, such that in a front elevational view the central region may appear sunken relative to the left and right regions of the front wall. Similarly, in some embodiments, a central region of the rear wall of the housing 2 may be shorter in height than left and right ends regions of the rear wall, such that in a rear elevational view the central region may appear sunken relative to the left and right regions of the rear wall. As shown in
According to some embodiments of the present invention, the insulating body 3 may be configured to fit into the assembly space 26 of the housing 2, as depicted in
According to some embodiments of the present invention, when the insulating body 3 is fitted into the assembly space of the housing 2, portions of external or outward-facing surfaces of a front wall and a rear wall of the insulating body 3 may be spaced apart from portions of inward facing surfaces of the front wall and the rear wall of the housing 2, respectively, so as to form a docking slot 35 on front and rear sides of the electrical connector 1. The docking holes 20 in the front wall of the housing 2 may be in communication with the docking slot 35 on the front side of the electrical connector 1, and the docking holes 20 in the rear wall of the housing 2 may be in communication with the docking slot 35 on the rear side of the electrical connector 1.
According to some embodiments of the present invention, the front wall of the insulating body 3 may be comprised of a plurality of first protrusions extending outward from the front wall, and the rear wall of the insulating body 3 may be comprised of a plurality of second protrusions extending outward from the rear wall. A perimeter of the docking slot 35 on the front side of the electrical connector 1 may be defined by the front wall of the insulating body 3, the first protrusions, and the front wall of the housing 2. Similarly, a perimeter of the docking slot 35 on the rear side of the electrical connector 1 may be defined by the rear wall of the insulating body 3, the second protrusions, and the rear wall of the housing 2.
In some embodiments of the present invention, the docking slot 35 on the front side of the electrical connector 1 may have a dimension that is different from that of the docking slot 35 on the rear side of the electrical connector 1. For example, as shown in
The docking slots 35 on the front and rear sides of the electrical connector 1 may be configured to receive therein docking legs of a mating connector. For example, the docking slot 35 on the front side of the electrical connector 1 may be configured to receive a front docking leg 604 of the plug connector 600, and the docking slot 35 on the rear side of the electrical connector 1 may be configured to receive a rear docking leg 606 of the plug connector 600.
When the first and second dimensions 351, 352 are different from each other, a user may use the different dimensions to determine proper front and rear orientations of a mating connector and thus avoid mating-operation mistakes, which may damage the electrical connector and/or the mating connector. For example, if the docking slot 35 on the front side of the electrical connector 1 is dimensionally smaller than the docking slot 35 on the rear side of the electrical connector 1, the user may use this difference to easily ascertain that the smaller docking leg of the mating connector should be inserted in the front docking slot 35 and the larger docking leg of the mating connector should be inserted in the rear docking slot 35. The size differences may be used advantageous to prevent errors in mating operations.
Alternatively, in some embodiments of the present invention, when the first and second dimensions 351, 352 are the same, the user may easily ascertain that there is no orientation restriction for properly connecting a mating connector to the electrical connector 1 (e.g., the mating connector may be reversible and may be properly connected in two different orientations).
In some other alternative embodiments of the present invention, when the first and second dimensions 351, 352 of the electrical connector 1 are different, but a mating connector has docking legs sized to fit in the docking slots 35 in either of two reversible orientations, the mating connector may be mated to the electrical connector 1 in either of the two orientations. As will be appreciated, in order for reversible orientations to be possible, symmetrically located protrusions on the docking legs of the mating connector are configured to align with the symmetrically located docking holes 20 on the front and rear sides of the electrical connector 1.
The insulating body 3 may be comprised of at least one third snap-fit part 31 configured to engage with the at least one first snap-fit part 21 of the housing 2. In
According to some embodiments of the present invention, the insulating body 3 may be comprised of at least one fourth snap-fit part 32 provided on a left wall and a right wall of the insulating body 3, as shown in
As shown in
The terminal set 4 may be comprised of a plurality of metal terminals 41, as shown in
In some embodiments of the present invention, the terminal set 4 may be provided with a terminal fixing seat 43 and at least one terminal base 42. In some embodiments, such as shown in
According to some embodiments of the present invention, respective groups of the metal terminals 41 may be fixed in corresponding terminal bases 42 such that the top portions of the metal terminals 41 of a group may extend from one surface of the corresponding terminal base 42 and bottom portions of the metal terminals 41 of the group may extend from another surface of the corresponding terminal base 42, as shown in
In some alternative embodiments of the present invention, the electrical connector may be comprised of two terminal sets 4 disposed in the accommodating space 30 of the insulating body 3. For example, one terminal set 4 may be arranged closer to the front side of the insulating body 3, and the other terminal set 4 may be arranged closer to the rear side of the insulating body 3. In other alternative embodiments, the insulating body may be comprised of multiple accommodating spaces 30 each configured to hold a terminal set 4 therein. Thus, it should be understood that the electrical connector 1 is not limited to the embodiments shown in the drawings but may be comprised of multiple terminal sets 4 arranged in multiple accommodating spaces 30.
In summary, it should be understood from the foregoing descriptions and the accompanying drawings that an electrical connector according to various embodiments of the present invention (e.g., the electrical connector 1) may be connected with a mating connector (e.g., the plug connector 600) by aligning the electrical connector's docking holes (e.g., the docking holes 20) with protrusions (e.g., the bumps 602) or other types of structures projecting from docking legs (e.g., the docking legs 604, 606) of the mating connector. According to some embodiments of the present technology, when the docking holes are symmetrically situated on opposite sides of the electrical connector, the mating connector may be snap-fit mated with the electrical connector in two different orientations (e.g., a normal orientation and a reversed orientation that is a 180° rotation from the normal orientation), provided that the mating connector has docking legs that are sized to fit in the docking slots 35 in both orientations. Thus, electrical connectors according to various embodiments of the present invention may be useable with various different mating connectors, some of which may be reversibly mated (e.g., by having docking legs 604, 606 that are dimensioned to fit in the docking slots 35 in two different orientations) and some of which may be mated in only a single orientation (e.g., by having docking legs 604, 606 that are differently dimensioned to fit the different dimensions 351, 352 of the docking slots 35 in one orientation).
It is to be understood that the foregoing features may be used, separately or together in any combination, in any of the embodiments discussed herein.
Further, although advantages of the present technology may be indicated, it should be appreciated that not every embodiment of the present technology may include every described advantage. Some embodiments may not implement any feature described herein as advantageous. Accordingly, the foregoing description and attached drawings are by way of example only.
Variations of the disclosed embodiments are possible. For example, various aspects of the present technology may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing, and therefore they are not limited in application to the details and arrangements of components set forth in the foregoing description or illustrated in the drawings. Aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the description and the claims to modify an element does not by itself connote any priority, precedence, or order of one element over another, or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element or act having a certain name from another element or act having a same name (but for use of the ordinal term) to distinguish the elements or acts.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
As used herein in the specification and in the claims, the term “equal” or “the same” in reference to two values (e.g., distances, widths, etc.) means that two values are the same within manufacturing tolerances. Thus, two values being equal, or the same, may mean that the two values are different from one another by ±5%.
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e., “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.”
Finally, it is to be understood that the scope of the present invention is not limited to claims recited below or the embodiments described herein and shown in the drawings. It is to be understood that the scope of the invention and the claims includes equivalent modifications and variations that can be conceived by one of ordinary skill in the art based on the disclosure of the present technology.
For convenience, the following is a key to reference characters used herein and in the drawings for the electrical connector 1:
Number | Date | Country | Kind |
---|---|---|---|
110204288 | Apr 2021 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2996710 | Pratt | Aug 1961 | A |
3002162 | Garstang | Sep 1961 | A |
3134950 | Cook | May 1964 | A |
3322885 | May et al. | May 1967 | A |
3786372 | Epis et al. | Jan 1974 | A |
3825874 | Peverill | Jul 1974 | A |
3863181 | Glance et al. | Jan 1975 | A |
4155613 | Brandeau | May 1979 | A |
4195272 | Boutros | Mar 1980 | A |
4276523 | Boutros et al. | Jun 1981 | A |
4371742 | Manly | Feb 1983 | A |
4408255 | Adkins | Oct 1983 | A |
4447105 | Ruehl | May 1984 | A |
4471015 | Ebneth et al. | Sep 1984 | A |
4484159 | Whitley | Nov 1984 | A |
4490283 | Kleiner | Dec 1984 | A |
4518651 | Wolfe, Jr. | May 1985 | A |
4519664 | Tillotson | May 1985 | A |
4519665 | Althouse et al. | May 1985 | A |
4632476 | Schell | Dec 1986 | A |
4636752 | Saito | Jan 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4751479 | Parr | Jun 1988 | A |
4761147 | Gauthier | Aug 1988 | A |
4806107 | Arnold et al. | Feb 1989 | A |
4846724 | Sasaki et al. | Jul 1989 | A |
4846727 | Glover et al. | Jul 1989 | A |
4878155 | Conley | Oct 1989 | A |
4948922 | Varadan et al. | Aug 1990 | A |
4970354 | Iwasa et al. | Nov 1990 | A |
4975084 | Fedder et al. | Dec 1990 | A |
4992060 | Meyer | Feb 1991 | A |
5000700 | Masubuchi et al. | Mar 1991 | A |
5013262 | Shibano | May 1991 | A |
5030140 | Sugiyama | Jul 1991 | A |
5066236 | Broeksteeg | Nov 1991 | A |
5141454 | Garrett et al. | Aug 1992 | A |
5150086 | Ito | Sep 1992 | A |
5166527 | Solymar | Nov 1992 | A |
5168252 | Naito | Dec 1992 | A |
5168432 | Murphy et al. | Dec 1992 | A |
5176538 | Hansell, III et al. | Jan 1993 | A |
5266055 | Naito et al. | Nov 1993 | A |
5280257 | Cravens et al. | Jan 1994 | A |
5287076 | Johnescu et al. | Feb 1994 | A |
5334050 | Andrews | Aug 1994 | A |
5340334 | Nguyen | Aug 1994 | A |
5346410 | Moore, Jr. | Sep 1994 | A |
5429520 | Morlion et al. | Jul 1995 | A |
5429521 | Morlion et al. | Jul 1995 | A |
5433617 | Morlion et al. | Jul 1995 | A |
5433618 | Morlion et al. | Jul 1995 | A |
5456619 | Belopolsky et al. | Oct 1995 | A |
5461392 | Mott et al. | Oct 1995 | A |
5474472 | Niwa et al. | Dec 1995 | A |
5484310 | McNamara et al. | Jan 1996 | A |
5496183 | Soes et al. | Mar 1996 | A |
5499935 | Powell | Mar 1996 | A |
5551893 | Johnson | Sep 1996 | A |
5562497 | Yagi et al. | Oct 1996 | A |
5597328 | Mouissie | Jan 1997 | A |
5651702 | Hanning et al. | Jul 1997 | A |
5669789 | Law | Sep 1997 | A |
5796323 | Uchikoba et al. | Aug 1998 | A |
5831491 | Buer et al. | Nov 1998 | A |
5924899 | Paagman | Jul 1999 | A |
5981869 | Kroger | Nov 1999 | A |
5982253 | Perrin et al. | Nov 1999 | A |
6019616 | Yagi et al. | Feb 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6168469 | Lu | Jan 2001 | B1 |
6174203 | Asao | Jan 2001 | B1 |
6174944 | Chiba et al. | Jan 2001 | B1 |
6217372 | Reed | Apr 2001 | B1 |
6293827 | Stokoe | Sep 2001 | B1 |
6296496 | Trammel | Oct 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6328601 | Yip et al. | Dec 2001 | B1 |
6347962 | Kline | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6364711 | Berg et al. | Apr 2002 | B1 |
6375510 | Asao | Apr 2002 | B2 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6398588 | Bickford | Jun 2002 | B1 |
6409543 | Astbury, Jr. et al. | Jun 2002 | B1 |
6482017 | Van Doorn | Nov 2002 | B1 |
6503103 | Cohen et al. | Jan 2003 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6517360 | Cohen | Feb 2003 | B1 |
6530790 | McNamara et al. | Mar 2003 | B1 |
6537087 | McNamara et al. | Mar 2003 | B2 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6565387 | Cohen | May 2003 | B2 |
6565390 | Wu | May 2003 | B2 |
6579116 | Brennan et al. | Jun 2003 | B2 |
6582244 | Fogg et al. | Jun 2003 | B2 |
6595802 | Watanabe et al. | Jul 2003 | B1 |
6602095 | Astbury, Jr. et al. | Aug 2003 | B2 |
6616864 | Jiang et al. | Sep 2003 | B1 |
6652318 | Winings et al. | Nov 2003 | B1 |
6655966 | Rothermel et al. | Dec 2003 | B2 |
6709294 | Cohen et al. | Mar 2004 | B1 |
6713672 | Stickney | Mar 2004 | B1 |
6743057 | Davis et al. | Jun 2004 | B2 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6786771 | Gailus | Sep 2004 | B2 |
6814619 | Stokoe et al. | Nov 2004 | B1 |
6830489 | Aoyama | Dec 2004 | B2 |
6872085 | Cohen et al. | Mar 2005 | B1 |
6979226 | Otsu et al. | Dec 2005 | B2 |
7044794 | Consoli et al. | May 2006 | B2 |
7057570 | Irion, II et al. | Jun 2006 | B2 |
7074086 | Cohen et al. | Jul 2006 | B2 |
7094102 | Cohen et al. | Aug 2006 | B2 |
7108556 | Cohen et al. | Sep 2006 | B2 |
7163421 | Cohen et al. | Jan 2007 | B1 |
7285018 | Kenny et al. | Oct 2007 | B2 |
7335063 | Cohen et al. | Feb 2008 | B2 |
7494383 | Cohen et al. | Feb 2009 | B2 |
7540781 | Kenny et al. | Jun 2009 | B2 |
7581990 | Kirk et al. | Sep 2009 | B2 |
7588464 | Kim | Sep 2009 | B2 |
7699644 | Szczesny et al. | Apr 2010 | B2 |
7722401 | Kirk et al. | May 2010 | B2 |
7731537 | Amleshi et al. | Jun 2010 | B2 |
7753731 | Cohen et al. | Jul 2010 | B2 |
7771233 | Gailus | Aug 2010 | B2 |
7794240 | Cohen et al. | Sep 2010 | B2 |
7794278 | Cohen et al. | Sep 2010 | B2 |
7806729 | Nguyen et al. | Oct 2010 | B2 |
7862378 | Wan et al. | Jan 2011 | B1 |
7874873 | Do et al. | Jan 2011 | B2 |
7887371 | Kenny et al. | Feb 2011 | B2 |
7887379 | Kirk | Feb 2011 | B2 |
7906730 | Atkinson et al. | Mar 2011 | B2 |
7914304 | Cartier et al. | Mar 2011 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
8083553 | Manter et al. | Dec 2011 | B2 |
8182289 | Stokoe et al. | May 2012 | B2 |
8215968 | Cartier et al. | Jul 2012 | B2 |
8216001 | Kirk | Jul 2012 | B2 |
8257095 | Akai | Sep 2012 | B2 |
8272877 | Stokoe et al. | Sep 2012 | B2 |
8348701 | Lan et al. | Jan 2013 | B1 |
8371875 | Gailus | Feb 2013 | B2 |
8382524 | Khilchenko et al. | Feb 2013 | B2 |
8657627 | McNamara et al. | Feb 2014 | B2 |
8715003 | Buck et al. | May 2014 | B2 |
8771016 | Atkinson et al. | Jul 2014 | B2 |
8864521 | Atkinson et al. | Oct 2014 | B2 |
8926377 | Kirk et al. | Jan 2015 | B2 |
8944831 | Stoner et al. | Feb 2015 | B2 |
8998642 | Manter et al. | Apr 2015 | B2 |
9004942 | Paniauqa | Apr 2015 | B2 |
9022806 | Cartier, Jr. et al. | May 2015 | B2 |
9028281 | Kirk et al. | May 2015 | B2 |
9124009 | Atkinson et al. | Sep 2015 | B2 |
9219335 | Atkinson et al. | Dec 2015 | B2 |
9225085 | Cartier, Jr. et al. | Dec 2015 | B2 |
9300074 | Gailus | Mar 2016 | B2 |
9450344 | Cartier, Jr. et al. | Sep 2016 | B2 |
9484674 | Cartier, Jr. et al. | Nov 2016 | B2 |
9509101 | Cartier, Jr. et al. | Nov 2016 | B2 |
9520689 | Cartier, Jr. et al. | Dec 2016 | B2 |
9742132 | Hsueh | Aug 2017 | B1 |
9972945 | Huang et al. | May 2018 | B1 |
10122129 | Milbrand, Jr. et al. | Nov 2018 | B2 |
10243304 | Kirk et al. | Mar 2019 | B2 |
10270191 | Li et al. | Apr 2019 | B1 |
10283910 | Chen et al. | May 2019 | B1 |
10348040 | Cartier, Jr. et al. | Jul 2019 | B2 |
10381767 | Milbrand, Jr. et al. | Aug 2019 | B1 |
10601181 | Lu et al. | Mar 2020 | B2 |
10777921 | Lu | Sep 2020 | B2 |
11128092 | Yang | Sep 2021 | B2 |
11146025 | Lu | Oct 2021 | B2 |
11189971 | Lu | Nov 2021 | B2 |
11289850 | Faith | Mar 2022 | B2 |
20010042632 | Manov et al. | Nov 2001 | A1 |
20020042223 | Belopolsky et al. | Apr 2002 | A1 |
20020089464 | Joshi | Jul 2002 | A1 |
20020098738 | Astbury et al. | Jul 2002 | A1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
20020111069 | Astbury et al. | Aug 2002 | A1 |
20020146926 | Fogg et al. | Oct 2002 | A1 |
20040005815 | Mizumura et al. | Jan 2004 | A1 |
20040020674 | McFadden et al. | Feb 2004 | A1 |
20040115968 | Cohen | Jun 2004 | A1 |
20040121652 | Gailus | Jun 2004 | A1 |
20040196112 | Welbon et al. | Oct 2004 | A1 |
20040259419 | Payne et al. | Dec 2004 | A1 |
20050070160 | Cohen et al. | Mar 2005 | A1 |
20050133245 | Katsuyama et al. | Jun 2005 | A1 |
20050176835 | Kobayashi et al. | Aug 2005 | A1 |
20050233610 | Tutt et al. | Oct 2005 | A1 |
20050283974 | Richard et al. | Dec 2005 | A1 |
20050287869 | Kenny et al. | Dec 2005 | A1 |
20060068640 | Gailus | Mar 2006 | A1 |
20060255876 | Kushta et al. | Nov 2006 | A1 |
20070004282 | Cohen et al. | Jan 2007 | A1 |
20070021001 | Laurx et al. | Jan 2007 | A1 |
20070037419 | Sparrowhawk | Feb 2007 | A1 |
20070042639 | Manter et al. | Feb 2007 | A1 |
20070054554 | Do et al. | Mar 2007 | A1 |
20070059961 | Cartier et al. | Mar 2007 | A1 |
20070218765 | Cohen et al. | Sep 2007 | A1 |
20080194146 | Gailus | Aug 2008 | A1 |
20080246555 | Kirk et al. | Oct 2008 | A1 |
20080248658 | Cohen et al. | Oct 2008 | A1 |
20080248659 | Cohen et al. | Oct 2008 | A1 |
20080248660 | Kirk et al. | Oct 2008 | A1 |
20090011641 | Cohen et al. | Jan 2009 | A1 |
20090011645 | Laurx et al. | Jan 2009 | A1 |
20090035955 | McNamara | Feb 2009 | A1 |
20090061661 | Shuey et al. | Mar 2009 | A1 |
20090117386 | Vacant et al. | May 2009 | A1 |
20090239395 | Cohen et al. | Sep 2009 | A1 |
20090258516 | Hiew et al. | Oct 2009 | A1 |
20090291593 | Atkinson et al. | Nov 2009 | A1 |
20090305530 | Ito et al. | Dec 2009 | A1 |
20090305533 | Feldman et al. | Dec 2009 | A1 |
20100048058 | Morgan et al. | Feb 2010 | A1 |
20100062650 | Nakamura | Mar 2010 | A1 |
20100081302 | Atkinson et al. | Apr 2010 | A1 |
20100203772 | Mao | Aug 2010 | A1 |
20100294530 | Atkinson et al. | Nov 2010 | A1 |
20110003509 | Gailus | Jan 2011 | A1 |
20110067237 | Cohen et al. | Mar 2011 | A1 |
20110104948 | Girard, Jr. et al. | May 2011 | A1 |
20110143605 | Pepe | Jun 2011 | A1 |
20110212649 | Stokoe et al. | Sep 2011 | A1 |
20110212650 | Amleshi et al. | Sep 2011 | A1 |
20110230095 | Atkinson et al. | Sep 2011 | A1 |
20110230096 | Atkinson et al. | Sep 2011 | A1 |
20110256739 | Toshiyuki et al. | Oct 2011 | A1 |
20110287663 | Gailus et al. | Nov 2011 | A1 |
20120094536 | Khilchenko et al. | Apr 2012 | A1 |
20120156929 | Manter et al. | Jun 2012 | A1 |
20120184154 | Frank et al. | Jul 2012 | A1 |
20120202363 | McNamara et al. | Aug 2012 | A1 |
20120202386 | McNamara et al. | Aug 2012 | A1 |
20120214344 | Cohen et al. | Aug 2012 | A1 |
20130012038 | Kirk et al. | Jan 2013 | A1 |
20130017733 | Kirk et al. | Jan 2013 | A1 |
20130078870 | Milbrand, Jr. | Mar 2013 | A1 |
20130090001 | Kagotani | Apr 2013 | A1 |
20130109232 | Paniaqua | May 2013 | A1 |
20130196553 | Gailus | Aug 2013 | A1 |
20130217263 | Pan | Aug 2013 | A1 |
20130225006 | Khilchenko et al. | Aug 2013 | A1 |
20130316590 | Hon | Nov 2013 | A1 |
20140004724 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004726 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004746 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140057498 | Cohen | Feb 2014 | A1 |
20140273557 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140273627 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140377992 | Chang et al. | Dec 2014 | A1 |
20150056856 | Atkinson et al. | Feb 2015 | A1 |
20150111427 | Foxconn | Apr 2015 | A1 |
20150236451 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150236452 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150255926 | Paniagua | Sep 2015 | A1 |
20160149343 | Atkinson et al. | May 2016 | A1 |
20170352970 | Liang et al. | Dec 2017 | A1 |
20180062323 | Kirk et al. | Mar 2018 | A1 |
20180145438 | Cohen | May 2018 | A1 |
20180205177 | Zhou et al. | Jul 2018 | A1 |
20180212376 | Wang et al. | Jul 2018 | A1 |
20180219331 | Cartier, Jr. et al. | Aug 2018 | A1 |
20180269607 | Wu | Sep 2018 | A1 |
20190052019 | Huang et al. | Feb 2019 | A1 |
20190067854 | Ju et al. | Feb 2019 | A1 |
20190173209 | Lu | Jun 2019 | A1 |
20190173232 | Lu et al. | Jun 2019 | A1 |
20200076132 | Yang | Mar 2020 | A1 |
20200203867 | Lu | Jun 2020 | A1 |
20200259294 | Lu | Aug 2020 | A1 |
20200266584 | Lu | Aug 2020 | A1 |
20210135404 | Jiang | May 2021 | A1 |
20210399451 | Lu et al. | Dec 2021 | A1 |
20220037817 | Lu et al. | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
1179448 | Dec 2004 | CN |
1799290 | Jul 2006 | CN |
101176389 | May 2008 | CN |
101600293 | Dec 2009 | CN |
101790818 | Jul 2010 | CN |
101120490 | Nov 2010 | CN |
201846527 | May 2011 | CN |
102239605 | Nov 2011 | CN |
101600293 | May 2012 | CN |
102598430 | Jul 2012 | CN |
202395248 | Aug 2012 | CN |
104409906 | Mar 2015 | CN |
304240766 | Aug 2017 | CN |
304245430 | Aug 2017 | CN |
206712089 | Dec 2017 | CN |
207677189 | Jul 2018 | CN |
110729594 | Jan 2020 | CN |
209963304 | Jan 2020 | CN |
210111108 | Feb 2020 | CN |
111196014 | May 2020 | CN |
210723480 | Jun 2020 | CN |
211655155 | Oct 2020 | CN |
212571495 | Feb 2021 | CN |
212968224 | Apr 2021 | CN |
112952423 | Jun 2021 | CN |
306646962 | Jun 2021 | CN |
306646976 | Jun 2021 | CN |
306647993 | Jun 2021 | CN |
215184605 | Dec 2021 | CN |
215299556 | Dec 2021 | CN |
60216728 | Nov 2007 | DE |
1 018 784 | Jul 2000 | EP |
1 779 472 | May 2007 | EP |
2 169 770 | Mar 2010 | EP |
2 405 537 | Jan 2012 | EP |
1272347 | Apr 1972 | GB |
H07-302649 | Nov 1995 | JP |
2001-510627 | Jul 2001 | JP |
2006-344524 | Dec 2006 | JP |
9907324 | Aug 2000 | MX |
M558481 | Apr 2018 | TW |
M558482 | Apr 2018 | TW |
M558483 | Apr 2018 | TW |
M559006 | Apr 2018 | TW |
M559007 | Apr 2018 | TW |
M560138 | May 2018 | TW |
M562507 | Jun 2018 | TW |
M565894 | Aug 2018 | TW |
M565895 | Aug 2018 | TW |
M565899 | Aug 2018 | TW |
M565900 | Aug 2018 | TW |
M565901 | Aug 2018 | TW |
M579828 | Jun 2019 | TW |
M583642 | Sep 2019 | TW |
202211556 | Mar 2022 | TW |
202220301 | May 2022 | TW |
WO 8805218 | Jul 1988 | WO |
WO 9835409 | Aug 1998 | WO |
WO 2004059794 | Jul 2004 | WO |
WO 2004059801 | Jul 2004 | WO |
WO 2006039277 | Apr 2006 | WO |
WO 2007005597 | Jan 2007 | WO |
WO 2007005599 | Jan 2007 | WO |
WO 2008124057 | Oct 2008 | WO |
WO 2010030622 | Mar 2010 | WO |
WO 2010039188 | Apr 2010 | WO |
WO 2017007429 | Jan 2017 | WO |
Entry |
---|
U.S. Appl. No. 17/348,598, filed Jun. 15, 2021, Lu. |
U.S. Appl. No. 17/386,203, filed Jul. 27, 2021, Lu. |
EP 11166820.8, Jan. 24, 2012, Extended European Search Report. |
PCT/CN2017/108344, Aug. 1, 2018, International Search Report and Written Opinion. |
PCT/US2005/034605, Jan. 26, 2006 International Search Report and Written Opinion. |
PCT/US2006/025562, Oct. 31, 2007, International Search Report and Written Opinion. |
PCT/US2010/056482, May 24, 2012, International Preliminary Report on Patentability. |
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion. |
PCT/US2011/026139, Sep. 7, 2012, International Preliminary Report on Patentability. |
PCT/US2011/026139, Nov. 22, 2011, International Search Report and Written Opinion. |
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion. |
PCT/US2012/023689, Aug. 15, 2013, International Preliminary Report on Patentability. |
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion. |
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion. |
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion. |
PCT/US2017/047905, Dec. 4, 2017, International Search Report and Written Opinion. |
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012. |
International Search Report and Written Opinion for International Application No. PCT/CN2017/108344 dated Aug. 1, 2018. |
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007. |
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017. |
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013. |
[No Author Listed], SFF-TA-1016 Specification for Internal Unshielded High Speed Connector System. Rev 0.0.1. SNIA SFF TWG Technology Affiliate. Nov. 15, 2019. 40 pages. |
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7. |
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56. |
Number | Date | Country | |
---|---|---|---|
20220336999 A1 | Oct 2022 | US |