The subject matter herein relates generally to electrical connectors having wafers.
Modern electronic systems such as telecommunications systems and computer systems often include large circuit boards called backplane boards which are rack mounted or retained in cabinets and are electrically connected to a number of smaller circuit boards called daughter cards. Electrical connectors establish communications between the backplane and the daughter cards. The daughter cards are typically separate from each other and meet different requirements for different purposes such as transmission of high speed signals, low speed signals, power, etc. that are transferred to the daughter cards from the backplane board. Cable connectors are typically electrically connected to various electrical connectors within the system. However, as the density of such systems increase, the number of cables increases. The cables add weight to the system and occupy a large amount of space. In some applications, such as military and aerospace applications, weight reduction and space reduction are important. In some applications, environmental sealing of connectors is important.
A need exists for a connector system that is cost effective and reliable that may provide a weight reduction and/or a space reduction.
In one embodiment, an electrical connector is provided including a shell having a cavity and a wafer assembly received in the cavity. The wafer assembly includes a wafer housing holding a plurality of electrical wafers configured to be electrically mated to a mating connector. The wafer housing has a front end and the wafers extend forward from the front end being arranged parallel to each other within the cavity. Each wafer includes a first edge and a second edge with at least one trace between the first and second edges. An interfacial seal is provided along the front end. The interfacial seal is configured to seal between the electrical connector and the mating connector. The interfacial seal provides an environmental seal for the wafer assembly.
In another embodiment, an electrical connector is provided including a shell having a cavity and a wafer assembly received in the cavity. The wafer assembly includes a wafer housing holding a plurality of electrical wafers configured to be electrically mated to a mating connector. The wafer housing has a front end with the wafers extending forward from the front end and being arranged parallel to each other within the cavity. Each wafer includes a first edge and a second edge with at least one trace between the first and second edges. An interfacial seal is provided along the front end. The interfacial seal is sealed against each of the wafers of the wafer assembly. The interfacial seal is configured to seal to the mating connector.
In a further embodiment, an electrical connector is provided including a shell having a cavity and a wafer assembly received in the cavity. The wafer assembly includes a wafer housing holding a plurality of electrical wafers configured to be electrically mated to a mating connector. The wafer housing has a front end with the wafers extending forward from the front end and being arranged parallel to each other within the cavity. Each wafer includes a first edge and a second edge with at least one trace between the first and second edges. The electrical connector includes a flex harness having a plurality of flexible printed circuit boards (FPCBs). The FPCBs are electrically connected to corresponding wafers and extend rearward from the cavity. The flex harness has a flex seal configured to be sealed to at least one FPCB.
The FPCBs allow flexibility in the design and system layout. The electrical connectors 102, 104 establish communication between the various components. The connector system 100 may be designed to meet different requirements for different purposes such as transmission of high speed signals, low speed signals, power, and the like between the various components. Because connector space may be limited on circuit boards, the FPCBs allow electrical connection without the need for one or more circuit boards. For example, midplane boards, daughtercards and/or backplanes may be eliminated in the communication system with the use of the FPCBs.
The electrical connectors 102, 104 offer flexibility and customization within the connector system 100 by using modular components which can be used in a variety of combinations. For example, the electrical connectors 102, 104 use the FPCBs to route between various components or connectors. One or both of the electrical connectors 102, 104 may use printed circuit electrical wafers at mating interfaces thereof (in the illustrated embodiment, the first electrical connector 102 uses wafers, while the second electrical connector uses contacts to mate to the wafers at a separable interface; however the second electrical connector may have wafers at the mating interface with the FPCBs). The electrical connectors 102, 104 provide a flexible platform to provide the density, data throughput, and signal integrity required for various applications in computer, communications, military, medical, industrial control or other industries. The use of the printed circuit electrical wafers allows for cost effective sequencing and electrical customization of the connectors 102, 104. The wafers can be manufactured specifically for differential or single ended performance and the impedance, propagation delay, and crosstalk of the connector can be altered per customer requirements. The electrical connectors 102, 104 are scalable and may include any number of wafers, such wafers may be signal wafers, power wafers or signal and power wafers. The wafers are not necessarily all of the same type; and further, each can be functionally independent of the others. That is, the connectors 102, 104 can include a mix of electrical wafers that perform different functions. The connectors 102, 104 can be customized to a particular need simply by loading the appropriate wafers in a particular slot or location in the connector 102, 104. For instance, in an exemplary embodiment, the connectors 102, 104 may be configured to carry signal information on some wafers and also transfer power on other wafers. Further, in various embodiments, the signal wafers may be high density signal wafers, low density signal wafers and/or hybrid signal wafers configured to carry both high speed signals and low speed signals. In addition, the signal wafers may carry different numbers of signal lines.
In an exemplary embodiment, the electrical connector 102 includes a wafer stack 114 having a plurality of electrical wafers 120 arranged parallel to each other. Each wafer 120 includes traces extending between a first edge and a second edge (and optionally a third edge or more edges). The traces may include pads at or near the first and second edges for electrical terminations to the traces. Optionally, the edges may be at opposite sides from each other and thus define a straight pass through the wafer 120 of the power or signal. Alternatively, the edges may be perpendicular to each other.
The electrical connector 102 includes a flex harness 128 including a plurality of FPCBs 130. The FPCBs 130 are electrically connected to corresponding wafers 120 at mating interfaces 150. The FPCBs 130 may include traces, such as signal traces, ground traces, power traces and the like. Optionally, as in the illustrated embodiment, the FPCBs 130 may be soldered directly to the wafers 120 at the interfaces 150. For example, the traces of the FPCBs 130 are electrically connected to the pads of corresponding traces of the wafers 120 of the wafer stack 114, such as at the second edge. Alternatively, the FPCBs 130 may be electrically connected to the wafers 120 via one or more contact sub-assemblies at the mating interfaces 150. For example, the contact sub-assembly(ies) may be terminated to the wafers 120 and the FPCBs 130 may be connected to the contact sub-assembly(ies).
In an exemplary embodiment, an interfacial seal 160 is provided between the first electrical connector 102 and the second electrical connector 104. The interfacial seal 160 may be attached to the first electrical connector 102, such as at the mating end of the electrical connector 102, or may be attached to the second electrical connector 104. The interfacial seal 160 may provide a sealing interface with the second electrical connector 104. Optionally, the interfacial seal 160 may seal to each of the wafers 120 individually.
In an exemplary embodiment, the first electrical connector 102 includes one or more flex seals 162 at the rear end of the electrical connector 102. The flex seal(s) 162 provide a sealing interface for the FPCBs 130. Optionally, each FPCB 130 may have its own designated flex seal 162. The flex seal 162 may seal to the FPCB 130. The flex seal 162 may seal to the corresponding wafer 120. The flex seal 162 may seal to the shell or housing of the electrical connector 102. In other various embodiments, the electrical connector 102 includes a single flex seal 162 which may be referred to as a harness seal configured to seal the flex harness to the FPCBs 130 and/or the housing. For example, the flex seal 162 may be potting material, such as epoxy material, that fills the rear end of the electrical connector where the FPCBs exit the shell or housing. Other types of flex seals may be provided in alternative embodiments. The flex seal 162 may provide an environmental seal. The flex seal 162 may provide strain relief for the FPCBs 130.
The electrical connector 104 includes a wafer stack 214 having a plurality of electrical wafers 220 arranged parallel to each other. Each wafer 220 includes traces extending between edges of the wafer 220. The traces may include pads at or near the corresponding edges for electrical terminations to the traces. Optionally, the edges may be at opposite sides from each other and thus define a straight pass through the wafer 220 of the power or signal. Alternatively, the edges may be perpendicular to each other.
The electrical connector 104 includes at least one contact sub-assembly 240 terminated to the wafer stack 214. In the illustrated embodiment, a single contact sub-assembly 240 is terminated to the wafer stack 214 as a unit; however, in alternative embodiments, individual contact sub-assemblies 240 may be separately terminated to each corresponding wafer 220. In an exemplary embodiment, the contact sub-assembly 240 includes a rigid printed circuit board (RPCB) and contacts extending from the RPCB. Housings may be mounted to both sides of the RPCB to hold the contacts. The contact sub-assembly 240 is terminated to the wafer stack 214 such that the contacts are terminated to corresponding traces of the wafers 220 at mating interfaces 250. Optionally, one or more of the edges of each of the wafers 220 may define separable interfaces with the contacts of the contact sub-assembly 240. The wafers 120 may extend from the housing of the contact sub-assembly 240.
The electrical connector 104 includes a flex harness 228 having a plurality of FPCBs 230. The contact sub-assembly 240 is provided between the flex harness 228 and the wafer stack 214 and provides the electrical connection therebetween. Each FPCB 230 may be separately terminated to the wafer 220 at corresponding mating interfaces 252. The FPCBs 230 have traces. The FPCBs 230 are terminated to the wafers 220 such that the traces of the FPCBs 230 are electrically connected to corresponding contacts of the contact sub-assembly 240 via the traces of the wafers 220.
In an exemplary embodiment, the second electrical connector 104 includes one or more flex seals 262 at the rear end of the electrical connector 104. The flex seal(s) 262 provide a sealing interface for the FPCBs 230. Optionally, each FPCB 230 may have its own designated flex seal 262. The flex seal 262 may seal to the FPCB 230. The flex seal 262 may seal to the corresponding wafer 220. The flex seal 262 may seal to the shell or housing of the electrical connector 104. In other various embodiments, the electrical connector 102 includes a single flex seal 262 that seals each of the FPCBs 230. For example, the flex seal 262 may be potting material, such as epoxy material, that fills the rear end of the electrical connector where the FPCBs 230 exit the shell or housing. Other types of flex seals may be provided in alternative embodiments. Optionally, an interfacial seal (not shown) may be provided at the mating end of the electrical connector 104 for sealing to the first electrical connector 102.
The electrical connector 302 includes a wafer assembly 314, which is received in the cavity 312. The wafer assembly 314 includes a plurality of electrical wafers 320 stacked together and arranged parallel to each other within the cavity 312. Optionally, the wafers 320 may be sealed at the shell 310, such as at the rear of the shell 310 with a seal or gasket received in the cavity 312 or with potting or another compound in the cavity 312. Each wafer 320 includes traces 322 extending between opposite edges of the wafer 320 (for example, front and rear edges of the wafer 320). The traces 322 may include pads 324 at or near the first and/or second edges for electrical terminations to the traces 322.
The electrical connector 302 includes a flex harness 328 including a plurality of FPCBs 330. The FPCBs 330 are electrically connected to corresponding wafers 320.
In an exemplary embodiment, the electrical connector 302 includes a contact sub-assembly 340 provided at the front of the wafer assembly 314.
Optionally, the wafer contacts 350 are tuning-fork style contacts including a socket configured to receive the wafer 320 therein. Other types of wafer contacts 350 may be provided in alternative embodiments. The wafer contacts 350 are configured to be terminated to the mating pads 327 (shown in
Optionally, the mating contacts 352 are spring beam style contacts having a deflectable spring beam configured to be mated with the electrical connector 304, such as to wafers of the electrical connector 304. The mating contacts 352 may define separable interfaces with the wafers of the electrical connector 304. The mating contacts 352 may be other types of contacts in alternative embodiments. The mating contacts 352 may be configured to be terminated to other components in alternative embodiments.
In an exemplary embodiment, the contact sub-assembly 340 includes a front housing 360 extending from the second side 346 of the RPCB 342 and a rear housing 362 extending from the first side 344 of the RPCB 342. The front housing 360 extends to a front end 361. The front housing 360 holds the mating contacts 352. For example, the front housing 360 may include a plurality of contact channels that hold corresponding mating contacts 352. The front housing 360 includes a plurality of slots 364 configured to receive wafers of the second electrical connector 304. The mating contacts 352 are configured to be electrically connected to the wafers received in the slots 364 at separable interfaces of the mating contacts 352. The rear housing 362 may define a wafer housing that holds the wafer contacts 350. The rear housing 362 has a plurality of slots 366 at a rear end 368. Each slot 366 is configured to receive a corresponding wafer 320 of the wafer assembly 314. The wafer contacts 350 may be terminated to such wafers 320 within the slots 366.
In an exemplary embodiment, with reference to
Returning to
Optionally, the wafers 420 may be sealed at the shell 410. For example, the electrical connector 304 may include an interfacial seal 416 coupled to the wafer assembly 414. The interfacial seal 416 may seals against each of the wafers 420. The interfacial seal 416 may seal a perimeter of the wafer assembly 414. The interfacial seal 416 may seal to the shell 410. The interfacial seal 416 may seal against the electrical connector 302, such as against the spacer 370 (
Each wafer 420 includes signal traces 422 on a signal layer of the wafer 420. The signal traces 422 may be exposed at or near one or both edges 424 of the wafer. The traces 422 may include pads for electrical terminations to the traces 422. The wafer 420 includes one or more ground layers which may be exposed at predetermined locations for electrical termination.
In an exemplary embodiment, the electrical connector 304 includes a wafer housing 426 configured to hold each of the wafers 420 of the wafer assembly 414. For example, the wafer housing 426 may hold the wafers 420 at predetermined spacing. The wafer housing 426 may have slots 423 that hold the wafers 420. The wafers 420 may be exposed in a rear pocket 425 at a rear end of the wafer housing 426. The wafer housing 426 is configured to be received in the shell 410. For example, the wafer housing 426 may be sized and shaped to fit in the cavity 412. The wafer housing 426 may be manufactured from a dielectric material, such as a plastic material. The interfacial seal 416 may seal against a front end 427 of the wafer housing 426. For example, the interfacial seal 416 may seal at the locations where the wafers 420 extend from the wafer housing 426.
The electrical connector 304 includes a flex harness 428 having a plurality of FPCBs 430. The FPCBs 430 may be similar to the FPCBs 330 (
The flex seal 480 includes a slot 482 and the FPCB 430 is loaded through the slot 482. Optionally, the FPCB 430 may be fished through the slot 482 prior to being terminated to the wafer 420. The flex seal 480 may then be pushed forward into position and sealed against the wafer 420.
Optionally, the flex seal 480 may be mechanically secured to the wafer 420, such as being bonded to the wafer 420. The flex seal 480 may provide strain relief for the electrical connection between the FPCB 430 and the wafer 420. The flex seal 480 may be sized and shaped to fit into the wafer housing 426 (
In an alternative embodiment, rather than individual flex seals sealed to each wafer 420 individually, the flex seal 480 is an end seal that seals the entire rear end of the electrical connector 304. For example, the flex seal 480 may be potting material filling the rear end of the shell 410. The potting material may be epoxy. The potting material may provide sealing and/or strain relief for the FPCBs 430. The flex seal 480 may seal to each of the wafers 420. The flex seal 480 may seal to each of the FPCBs 430. The flex seal 480 may seal to the shell 410. The FPCBs 430 exit the flex seal 480.
With additional reference to
In an exemplary embodiment, the protrusions 496 are configured to be received in corresponding channels 372 in the spacer 370 (or alternatively directly into the slots 364 in the front housing 360 when the spacer 370 is not used). The protrusions 496 seal against the sealing surface 371 of the spacer 370, such as interior of the channels 372. Optionally, the channels 372 may include lead-ins 500 for loading the protrusions 496 and wafers 420 therethrough.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Number | Name | Date | Kind |
---|---|---|---|
3719918 | Kerr | Mar 1973 | A |
3835442 | Anderson | Sep 1974 | A |
4019799 | Bouvier | Apr 1977 | A |
4984992 | Beamenderfer | Jan 1991 | A |
5328388 | Fust | Jul 1994 | A |
6132256 | Morsdorf | Oct 2000 | A |
6471547 | Venaleck | Oct 2002 | B1 |
6638110 | Billman | Oct 2003 | B1 |
6739910 | Wu | May 2004 | B1 |
6743050 | Wu | Jun 2004 | B1 |
8449330 | Schroll | May 2013 | B1 |
8845364 | Wanha | Sep 2014 | B2 |
8911255 | Scherer | Dec 2014 | B2 |
20030181084 | Valasek | Sep 2003 | A1 |