1. Field of the Invention
An electrical connector for insulated conductors includes a housing containing a chamber and having a conductor opening communicating with the chamber, a bus bar mounted in the chamber adjacent the conductor opening, a compression spring mounted in the chamber for biasing the bare end of an insulated conductor inserted into the chamber via the conductor opening into electrical engagement with the bus bar, a retaining device normally retaining the spring in a retracted inoperable condition, and a manually operable release member for releasing the spring to its operable condition.
2. Description of Related Art
As shown by the prior patents to Beege et al U.S. Pat. No. 6,280,233 and Fricket et al U.S. Pat. No. 6,796,855, among others, it is known in the prior art to provide access openings in a connector housing to permit the entry of the tip of a tool into the housing central chamber to release the leg of a clamping spring that biases a bare conductor into electrical engagement with a conductor. It is also known to provide a connector having sectional operating members including a pair of rigid sections joined by an intermediate flexible section, as shown by the patent to Ziemke et al U.S. Pat. No. 7,063,557.
The most varied embodiments of such connection devices are known, especially as designed according to the direct plug-in technique (also called “push-in” connections), for example, according to the German patent No. DE 30 19 149 C2. This reference shows a screwless connection terminal with a compression spring that is used in order to firmly clamp a conductor in a clamping point between a free leg of the compression spring and a bus bar.
To be able to introduce the conductor into the clamping point, there is provided a catch arm on which one can lock the clamping leg of the compression spring in a position in which the clamping point is opened so that one can introduce a conductor. To release the compression spring from the catch position, one uses a release bridge on the catch arm that is actuated by the free conductor end itself, which end is pushed into the clamping point. This solution entails a disadvantage to the effect that the release bridge cannot be separated when a very fine-wire conductor is introduced.
The present invention was developed to avoid the above and other drawbacks of the known connector devices, especially when used with delicate fine-wire conductors.
A primary object of the present invention is to provide an electrical connector including a housing containing a chamber in which is mounted a bus bar, spring means for biasing into electrical engagement with the bus bar the bare end of an insulated conductor that is inserted into the chamber via a conductor opening, retaining means for retaining the spring means in a retracted inoperable condition to permit the insertion and removal of the conductor bare end relative to the chamber, and manually operable release means for releasing the spring means for operation to its expanded operable condition.
In one embodiment, the release member is connected for sliding movement between releasing and retaining positions, and the housing contains a reset access opening. In a second embodiment, the release member includes a pair of rigid sections joined by a flexible section, the release member being movable between retaining and releasing positions by operating buttons at exposed ends of the sections.
According to another object of the invention, means are provided for resetting the connector apparatus to its initial open condition. In the first embodiment the reset means includes spring means for automatically biasing the release member toward its original retaining position relative to the housing. In the second embodiment, the sectional U-shaped release member is manually operable between its releasing and retaining positions by the alternate operation of push buttons that are arranged at opposite ends of the U-shaped release member and extend from a common surface of the connector housing.
According to the present invention, a housing formed from electrical insulating synthetic plastic material is provided for the tool-free wiring of a conductor with a bus bar and a clamping spring for the purpose of clamping the conductor firmly on the bus bar, which has at least one base leg and one clamping leg. It furthermore uses a combined catch-and-release element, which is movable with relation to the clamping leg and to the bus bar and which has a device, preferably an undercut, for the purpose of locking the catch-and-release element and/or the clamping leg in its opening position and which includes an actuation lug that can be actuated manually without any tools for the purpose of releasing the catch position and for movement into a conductor clamping position in which it releases the clamping leg.
The connection device can be wired extremely easily and quickly by hand and can easily be unwired, for example, with a tool such as a screwdriver. It is furthermore suitable also for particularly fine-wire conductors by virtue of the manually operable catch-and-release element. The locking action results in a defined, precisely detectable opening position.
The connector has a simple and compact structure and is suitable for the most varied uses, for example, as a connection device for terminal blocks and other kinds of electrical appliances. It is particularly suitable for power safety switches or terminal blocks. It can also be used in the PCB field (printed circuit field) or in heavy plug-in connectors.
Actuation depressors are of course known, especially also on screwless direct plug-in clamps. But they are used for pressing down the clamping leg (see, for example, German patent No. DE 41 202 784 C2) and they do not have any perceptibly locked-open position.
Preferably, the actuation button or lug is so fashioned that it will be manually operable without any tools. Less preferred are embodiments that are to be actuated with a tool such as a screwdriver or a pin.
The connector of the present invention is particularly advantageously supplemented and further developed in the following manner: The base leg is so designed that when the connection device is unwired, the catch-and-release element is automatically reset by the force of the spring into its unwired position.
Preferably, the clamping spring is a spring that works like a compression spring on the conductor in the wired state because such arrangements offer a particularly compact and low-cost structure.
According to another advantage of the invention, but as a variant or version that can also be independently considered as an invention, the clamping leg can be moved with the catch-and-release element, especially in a tool-free manner, both into an engaged and open position as into a wired and disengaged position and can be locked there in each case. In that way, both the wiring and unwiring can be done without any tools and, in particular, fine-wire conductors can be handled with a push-in technique by way of manual actuation. Here again, it is possible to preset the open position in a pre-assembled fashion “at the factory,” something which facilitates handling at the place of actual employment.
This can be done in a particularly simple manner in terms of design according to a particularly preferred version as follows. The catch-and-release element has two actuation lugs or buttons that protrude upward out of the insulation material housing, which lugs are arranged parallel to each other in shaft-like recesses of the insulation material and which are connected with each other via a band-like flexible segment, whereby the catch-and-release element preferably can be locked in the insulation material housing in the wired and in the unwired position and, in the process, engages or releases the clamping leg.
Other objects and advantages of the invention will become apparent from a study of the following specification, when viewed in the light of the accompanying drawing, in which:
Referring first more particularly to
Referring to
To release the conductor 12 of
Referring now to
In the apparatus illustrated in
To release the conductor from the connector housing, the operating button 115 is again displaced downwardly to retract the spring leg 104b toward its fully retained inoperable position illustrated in
While in accordance with the provisions of the Patent Statutes the preferred forms and embodiments of the invention have been illustrated and described, it will be apparent to those skilled in the art that changes may be made without deviating from the invention described above.
Number | Date | Country | Kind |
---|---|---|---|
20 2005 016 990 U | Oct 2005 | DE | national |
20 2006 009 460 U | Jun 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5975940 | Hartmann et al. | Nov 1999 | A |
6146187 | Pallai | Nov 2000 | A |
6280233 | Beege et al. | Aug 2001 | B1 |
6796855 | Fricke | Sep 2004 | B2 |
7063557 | Ziemke | Jun 2006 | B2 |
20030128206 | Sinn | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
3019149 | Nov 1981 | DE |
3044133 | Jun 1982 | DE |
3302372 | Jul 1984 | DE |
3504317 | Aug 1986 | DE |
41 02 784 | Aug 1992 | DE |
10 2004 001 202 | Jul 2004 | DE |
20 2004 000 419 | Jun 2005 | DE |
20 2004 000 418 | Jul 2005 | DE |
Number | Date | Country | |
---|---|---|---|
20070099479 A1 | May 2007 | US |