Generally, the invention relates to electrical connectors. More particularly, the invention relates to connector applications wherein orthogonally-mated connectors share common holes through a midplane. The invention further relates to skew correction for right-angle electrical connectors.
Right-angle connectors are well-known. A right-angle connector is a connector having a mating interface for mating with another connector and a mounting interface for mounting on a printed circuit board. The mating and mounting interfaces each define a plane, and the two planes are perpendicular (i.e., at a right angle) to each other. Thus, a right-angle connector can be used to electrically connect two boards perpendicularly to one another.
In a right-angle connector, one contact of a differential signal contact pair may be longer than the other contact of the pair. The difference in length in the contacts of the pair may create a different signal propagation time in one contact with respect to the other contact. It may be desirable to minimize this skew between contacts that form a differential signal pair in a right-angle connector.
Electrical connectors may be used in orthogonal applications. In an orthogonal application, each of two connectors is mounted to a respective, opposite side of a so-called “midplane.” The connectors are electrically coupled to one another through the midplane. A pattern of electrically conductive holes may be formed through the midplane. The terminal mounting ends of the contacts may be received into the holes. To reduce the complexity of the midplane, it is often desirable that the terminal mounting ends of the contacts from a first of the connectors be received into the same holes as the terminal mounting ends of the contacts from the other connector.
Additional background may be found in U.S. Pat. Nos. 5,766,023, 5,161,987, and 4,762,500, and in U.S. patent application Ser. No. 11/388,549, filed Mar. 24, 2006, entitled “Orthogonal Backplane Connector,” the contents of each of which are incorporated by reference in their entireties.
Connector systems according to aspects of the invention may include electrical connectors orthogonally connected to each other through shared through-holes in a midplane. Each orthogonal connector may be a vertical connector that is connected to a respective right-angle connector. A header or vertical connector may be used to affect (e.g., reduce, minimize, correct) the skew resultant from such differing contact lengths in the right angle connector. That is, the longer signal contact in the right-angle connector can be matched with the shorter signal contact in the header connector, and the shorter signal contact in the right-angle connector can be matched with the longer signal contact in the header connector.
By jogging the longer signal contacts in the header connector by the right amount, skew between the longer and shorter signal contacts in the right-angle connector may be eliminated or reduced. The vertical connector thus may include jogged contacts to offset for or equalize the different length contacts in the right-angle connector. For example, a first contact in the right angle connector may mate with a first contact in the vertical connector. A second contact in the right angle connector may mate with a second contact in the vertical connector. The first contact in the right angle connector may be greater in length than the adjacent second contact of the right angle connector. Thus, the second contact of the vertical connector may be jogged by the distance to increase the length of the second contact by the distance. When a signal is sent through the first and second contacts of the right angle and vertical connectors, for example, from the daughter card to the midplane, the signals will reach the midplane 100 simultaneously.
The midplane 100 may define a pattern of holes that extend from the first side 103 of the midplane 100 to the second side 102. Each of the vertical connectors 240, 340 may define contact tail patterns that correspond to the midplane-hole pattern. Accordingly, each hole may receive a respective contact from each of the connectors 240, 340. Thus, the connectors “share” the holes defined by the midplane 100.
Each of the right-angle connectors 230, 330 may be connected to a respective daughtercard 210, 310. The first connector 330 may be mounted on a daughtercard 310 that is horizontal. That is, the daughtercard 310 may lie in a plane defined the arrows designated X and Z shown in
Each right-angle connector 230, 330 may include lead frame assemblies 232-235, 335, with each including contacts extending from a mating interface of the connector 230, 330 (where the connector mates with a respective vertical connector 240, 340) to a mounting interface (where the connector is mounted on a respective daughtercard 210, 310). The lead frame assemblies 232-235, 335 may be retained within a respective right-angle connector 230, 330 by a respective retention member 238, 338.
The contacts within the right-angle connector 330 may be of differing lengths. For example, contacts that connect to the daughtercard 310 at a location further from the midplane 100 in a direction opposite that indicated by the arrow X may be longer than contacts mounted on the daughtercard 310 at a location closest to the midplane 100 in the opposite X direction. For example, a contact 331A located at the “top” of the leadframe assembly 335—that is, at a location furthest from the daughtercard 310—may be longer than a contact 331D located in a mid-portion of the leadframe assembly 335. The contact 331D likewise may be longer than a contact 331H located near the “bottom” of the leadframe assembly 335.
The connector system 320 and the connector system 220 shown in
As shown, the vertical connectors 240, 340 are “male” or “plug” connectors. That is, the mating portions of the contacts in the vertical connectors 240, 340 are blade shaped. Thus the vertical connectors 240, 340 may be header connectors. Correspondingly, the right-angle connectors 230, 330 (
The connectors 240, 340 may each include electrical contacts in a signal-signal-ground orientation or designation. Such orientation or designation may provide for differential signaling through the electrical connectors 240, 340. Of course, alternative embodiments of the invention may be used for single-ended signaling as well. Other embodiments may implement shields in lieu of ground contacts or connectors devoid of ground contacts and/or shields.
The contacts of each of the connectors 240, 340 may be arranged in arrays of rows and columns. Each column of contacts of the connector 340 may extend in the direction indicated by the Y arrow and each row of contacts of the connector 340 may extend in the direction indicated by the Z arrow of
In the example embodiments of
The first vertical connector 340 may include contacts 361S1-368G arranged in a column of contacts. The contacts 361S1, 361S2 of the first connector 340 may mate with contacts 268S1, 268S2, respectively, of the second connector 240 through shared holes of the midplane 100. Contacts 363S1, 363S2 of the first connector 340 may mate with contacts 240S2, 240S1, respectively, of the second connector 240 through shared holes. The remaining signal contacts, as well as ground contacts, of the first vertical connector 340 likewise may be mated with respective contacts of the second vertical connector 240 through shared holes of the midplane 100. Such mating within the midplane 100 is shown by the dashed lines.
As described herein, the vertical connector 240 may be electrically connected to the right angle connector 230. The right angle connector 230 may include contacts that have different lengths than other contacts in the right angle connector 230. As described with respect to
Skew results when the contacts that form a pair have different lengths (and, therefore, provide different signal propagation times). Skew is a known problem in right-angle connectors because, as shown in
A vertical connector according to the invention may be used to affect (e.g., reduce, minimize, correct) the skew resultant from such differing signal contact lengths. That is, the longer signal contact in the right-angle connector can be matched with the shorter signal contact in the vertical connector, and the shorter signal contact in the right-angle connector can be matched with the longer signal contact in the vertical connector. By jogging the longer signal contact in the vertical connector by the right amount, skew between the longer and shorter signal contacts in the right-angle connector could be eliminated. It should be understood, of course, that other performance characteristics, such as impedance, insertion loss, and cross-talk, for example, may also be affected by the length of the jogged interim portions. It should be understood, therefore, that the skew correction technique described herein may be used to affect skew, even if not to eliminate it. Note that such skew correction may be employed even in a non-orthogonal application because the skew correction relies only on the right-angle/vertical connector combination, and not on anything within the midplane or related to the other connector combination on the other side of the midplane.
As described in more detail herein, the vertical connector 240 thus may include jogged contacts to offset for or equalize the different length contacts in the right-angle connector 230. For example, a first contact in the right angle connector 230 may mate with a first contact in the vertical connector 240. A second contact in the right angle connector 230 may mate with a second contact in the vertical connector 240. The first contact in the right angle connector 230 may be greater in length by a distance D1 than the adjacent second contact of the right angle connector 230. Thus, the second contact of the vertical connector 240 may be jogged by the distance D1 to increase the length of the second contact by a distance D1. When a signal is sent through the first and second contacts of the right angle and vertical connectors, for example, from the daughter card 210 to the midplane 100, the signals will reach the midplane 100 simultaneously.
Within the dielectric vertical connector housing 243, 343 of respective connectors 240, 340, interim portions of the ground contacts extend (or jog) a first distance D1 (e.g., 2.8 mm) at an angle (e.g., 90°) from an end of the mating portion M (i.e., the blade portion) of the contact. Such an interim portion is designated “I” on the ground contact 267G. A terminal portion—designated T on the ground contact 267G—of each ground contact extends at an angle (e.g., 90°) from the jogged portion, parallel to the mating portion. For each signal pair, one signal contact may have a jogged interim portion J that extends a second distance D2 (e.g., 1.4 mm) at an angle (e.g., 90°) from an end of the mating portion (i.e., the blade portion)—designated “J” on the signal contact 268S1—of the contact. A terminal portion U of each first signal contact extends at an angle (e.g., 90°) from the jogged portion, parallel to the mating portion. The distance D2 may be chosen based on the differing lengths of adjacent contacts within a right angle connector such as the right angle connector 230. A second signal contact—such as the contact 268S2—in each pair does not include a jogged interim portion. Accordingly, the terminal portion of each second signal contact extends from the mating portion M along the same line as the mating portion. It should be understood that the second signal contacts could include a jogged interim portion, wherein the jogged interim portions of the second signal contacts extend at an angle from the mating portions by a third distance that is less than the second distance.
Thus, jogging the lengths of mating signal contacts may equalize the lengths of the electrical connection between the midplane 100 and the daughtercard 210 through the contacts 268S1, 268S2 and the respective contacts of the right angle connector 230 to which the contacts 268S1, 268S2 may be connected.
It should be noted that the tail ends of the contacts within the vertical connectors 240, 340 may be jogged in the same direction, and that the tails may be equally-spaced apart from one another. For example, with reference to the connector 240 as shown in
In the example embodiments of
The second vertical connector 240 may include contacts 273G-236S1 arranged in a column of contacts. The contacts 236S1, 236S2 of the second connector 240 may mate with contacts 367S2, 367S1, respectively, of the first connector 340 through shared holes of the midplane 100. The remaining signal contacts, as well as ground contacts, of the second vertical connector 240 may be likewise mated with respective contacts of the first vertical connector 340 through shared holes of the midplane 100. Such mating within the midplane 100 is shown by the dashed lines.
As described herein, the vertical connector 340 may be electrically connected to the right angle connector 330. The right angle connector 330 may include contacts that have different lengths than other contacts in the right angle connector 330. As described in more detail herein, the vertical connector 340 thus may include jogged contacts to offset for or equalize the different length contacts in the right-angle connector 330. For example, a first contact in the right angle connector 330 may mate with a first contact in the vertical connector 340. A second contact in the right angle connector 330 may mate with a second contact in the vertical connector 340. The first contact in the right angle connector 330 may be greater in length by a distance D1 than the adjacent second contact of the right angle connector 330. Thus, the second contact of the vertical connector 340 may be jogged by the distance D1 to increase the length of the second contact by a distance D1. The distance D1 with respect to the connectors 330, 340 may be the same as or different than the distance D1 with respect to the connector 230, 240. Thus, when a signal is sent through the first and second contacts of the right angle and vertical connectors, for example, from the daughter card 310 to the midplane 100, the signals will reach the midplane 100 simultaneously.
For example, the dielectric vertical connector housing 243, 343 of respective connectors 240, 340, interim portions of the ground contacts may extend (or jog) a first distance D1 (e.g., 2.8 mm) at an angle (e.g., 90°) from an end of the mating portion M (i.e., the blade portion) of the contact. Such an interim portion is designated “I” on the ground contact 368G. A terminal portion—designated “T” on the ground contact 368G—of each ground contact extends at an angle (e.g., 90°) from jogged portion, parallel to the mating portion. For each signal pair, one signal contact may have a jogged interim portion that extends a second distance D2 (e.g., 1.4 mm) at an angle (e.g., 90°) from an end of the mating portion (i.e., the blade portion)—designated “J” on the signal contact 367S2—of the contact. A terminal portion “U” of each first signal contact—such as contact 367S2—extends at an angle (e.g., 90°) from the jogged portion, parallel to the mating portion. A second signal contact—such as the contact 367S1—in each pair does not include a jogged interim portion. Accordingly, the terminal portion of each second signal contact extends from the mating portion M along the same line as the mating portion. It should be understood that the second signal contacts each could include a jogged interim portion, wherein the jogged interim portions of the second signal contacts extend at an angle from the mating portions by a third distance that is less than the second distance.
Thus, jogging the lengths of the signal contacts 368G, 367S2 may equalize the lengths of the electrical connection between the midplane 100 and the daughtercard 310 through the contacts 367S1, 367S2 and the respective contacts of the right angle connector 330 to which the contacts 367S1, 367S2 may be connected.
It should be noted that the tail ends of the contacts within the vertical connectors 240, 340 may be jogged in the same direction, and that the tails may be equally-spaced apart from one another. For example, with reference to the connector 340 as shown in
The signal and ground contacts 361S1, 361S2, 362G, for example, may be mated to respective midplane through-holes 161S1, 161S2, 196. Also shown in
The contacts 268S1, 268S2, 267G, for example, may be mated to respective midplane through-holes 161S1, 161S2, 170. As described with respect to
Also shown in
The midplane 400 may define a pattern of holes that extend from the first side 403 of the midplane 400 to the second side 402. Each of the vertical connectors 540, 640 may define contact tail patterns that correspond to the midplane-hole pattern. Accordingly, each hole may receive a respective contact from each of the connectors 540, 640. Thus, the connectors “share” the holes defined by the midplane 400.
Each of the right-angle connectors 530, 630 may be connected to a respective daughtercard 510, 610. The first connector 630 may be mounted on a daughtercard 610 that is horizontal. That is, the daughtercard 610 may lie in a plane defined by the arrows designated X and Z shown in
Each right-angle connector 530, 630 may include lead frame assemblies, with each including contacts extending from a mating interface of the connector 530, 630 (where the connector mates with a respective vertical connector 540, 640) to a mounting interface (where the connector is mounted on a respective daughtercard 510, 610). The lead frame assemblies may be retained within a respective right-angle connector by a respective retention member.
As shown, the vertical connectors 540, 640 are “male” or “plug” connectors. That is, the mating portions of the contacts in the vertical connectors 540, 640 are blade shaped. Thus the vertical connectors 540, 640 may be header connectors. Correspondingly, the right-angle connectors 530, 630 (
The connectors 540, 640 may each include electrical contacts in a signal-signal-ground orientation or designation. Such orientation or designation may provide for differential signaling through the electrical connectors 540, 640. Of course, alternative embodiments of the invention may be used for single-ended signaling as well. Other embodiments may implement shields in lieu of ground contacts or connectors devoid of ground contacts and/or shields.
The contacts of each of the connectors 540, 640 may be arranged in arrays of rows and columns. Each column of contacts of the connector 640 may extend in the direction indicated by the Y arrow and each row of contacts of the connector 640 may extend in the direction indicated by the Z arrow of
In the example embodiments of
As described herein, the vertical connector 540 may be electrically connected to the right angle connector 530. The right angle connector 530 may include contacts that have different lengths than other contacts in the right angle connector 530. As described herein, for example, contacts in the right angle connector nearest the daughtercard may be shorter than contacts further from the daughtercard. Such different lengths may affect the properties of the connector 530 and the connector system 520. For example, signals may propagate through a shorter contact in the right angle connecter 530 in a shorter amount of time than a longer contact, resulting in signal skew. A header connector according to the invention may be used to affect (e.g., reduce, minimize, correct) the skew resultant from such differing contact lengths. That is, the longer signal contact in the right-angle connector can be matched with the shorter signal contact in the header connector, and the shorter signal contact in the right-angle connector can be matched with the longer signal contact in the header connector. By jogging the longer signal contact in the header connector by the right amount, skew between the longer and shorter signal contacts in the right-angle connector could be reduced or eliminated.
Within the dielectric vertical connector housing 543, 643 of respective connectors 540, 640, portions of each ground contact, such as the ground contact 567G may extend (or jog) a first distance D1 (e.g., 0.7 mm) at an angle (e.g., 45°) from an end of the mating portion (i.e., the blade portion) of the contact. A terminal portion of each ground contact, such as the ground contact 567G, may extend at an angle (e.g., 45°) from jogged portion, parallel to the mating portion.
For each signal pair, one signal contact, such as the contact 568S1 may include a jogged interim portion that extends at an angle (e.g., 45°) from an end of the mating portion (i.e., the blade portion) of the contact 568S1. A terminal (tail) portion of each first signal contact extends at an angle (e.g., 45°) from the jogged portion, parallel to the mating portion. Thus, the tail portion of the first signal contact may be offset in the first direction from the mating portion of the first signal contact by an offset distance (e.g., 0.7 mm).
The second signal contact, such as the contact 568S2 in each pair has a jogged interim portion that extends at an angle (e.g., 45°) from an end of the mating portion (i.e., the blade portion) of the contact 568S2. A terminal (tail) portion of each second signal contact extends at an angle (e.g., 45°) from the jogged portion, parallel to the mating portion. Thus, the tail portion of the second signal contact may be offset in a second direction from the mating portion of the second signal contact by an offset distance (e.g., 0.7 mm). The direction in which the tail of the second signal contact is offset from its mating portion may be the opposite of the direction in which the tail portions of the ground contact and the first signal contact are offset from their mating portions.
The contacts of the connector 640 likewise may be jogged in a manner similar to that described with respect to the connector 540.
The signal contacts 661G, 662S1, 662S2, for example, may be mated to respective midplane through-holes 470, 471, 472. Also shown in
The contacts 567G, 568S1, 568S2, for example, may be mated to respective midplane through-holes 473, 472, 471. As described with respect to
Also shown in
In an example embodiment, the anti-pads 741 may have a width (diameter at their ends) of about 1.25 mm (0.049″). The spacing between the anti-pads and adjacent traces may be about 0.05 mm (0.002″). Trace width may be about 0.16 mm (0.0063″). Intra-pair spacing may be about 0.16 mm (0.0063″), while inter-pair spacing may be about 0.49 mm (0.0193″). Spacing between adjacent anti-pads may be about 1.55 mm (0.061″).
This application is a continuation of U.S. patent application Ser. No. 11/837,847, filed Aug. 13, 2007, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein, which in turn claims the benefit under 35 U.S.C. §119(e) of provisional U.S. patent application No. 60/839,071, filed Aug. 21, 2006, and of provisional U.S. patent application No. 60/846,711, filed Sep. 22, 2006, and of provisional U.S. patent application No. 60/917,491, filed May 11, 2007, entitled “Skewless Electrical Connector.” The subject matter of this application is related to that of U.S. patent application Ser. No. 10/294,966, filed Nov. 14, 2002, now U.S. Pat. No. 6,976,886; U.S. patent application Ser. No. 10/634,547, filed Aug. 5, 2003, now U.S. Pat. No. 6,994,569; and U.S. patent application Ser. No. 11/052,167, filed Feb. 7, 2005. The contents of each of the foregoing patent applications and patents are incorporated herein by reference in their entireties. The subject matter of this application is related to that of U.S. patent application Ser. No. 10/953,749, filed Sep. 29, 2004, entitled “High Speed Connectors that Minimize Signal Skew and Crosstalk.” The subject matter of this application is also related to that of U.S. patent application Ser. No. 11/388,549, filed Mar. 24, 2006, entitled “Orthogonal Backplane Connector,” U.S. patent application Ser. No. 11/958,098, filed Dec. 17, 2007, entitled “Shieldless, High-Speed, Low-Cross-Talk Electrical Connector,” U.S. patent application Ser. No. 11/388,549, filed Mar. 24, 2006, entitled “Orthogonal Backplane Connector,” and U.S. patent application Ser. No. 11/855,339, filed Sep. 14, 2007, entitled “High Speed Connectors That Minimize Signal Skew and Crosstalk.”
Number | Name | Date | Kind |
---|---|---|---|
2664552 | Ericsson et al. | Dec 1953 | A |
2849700 | Perkin | Aug 1958 | A |
2858372 | Kaufman | Oct 1958 | A |
3115379 | McKee | Dec 1963 | A |
3286220 | Marley et al. | Nov 1966 | A |
3343120 | Whiting | Sep 1967 | A |
3390369 | Zavertnik et al. | Jun 1968 | A |
3482201 | Schneck | Dec 1969 | A |
3538486 | Shlesinger Jr. | Nov 1970 | A |
3587028 | Uberbacher | Jun 1971 | A |
3591834 | Kolias | Jul 1971 | A |
3641475 | Irish et al. | Feb 1972 | A |
3663925 | Proctor | May 1972 | A |
3669054 | Desso et al. | Jun 1972 | A |
3701076 | Irish | Oct 1972 | A |
3748633 | Lundergan | Jul 1973 | A |
3827005 | Friend | Jul 1974 | A |
3867008 | Gartland, Jr. | Feb 1975 | A |
4030792 | Fuerst | Jun 1977 | A |
4045105 | Lee et al. | Aug 1977 | A |
4076362 | Ichimura | Feb 1978 | A |
4159861 | Anhalt | Jul 1979 | A |
4232924 | Kline et al. | Nov 1980 | A |
4260212 | Ritchie et al. | Apr 1981 | A |
4288139 | Cobaugh et al. | Sep 1981 | A |
4383724 | Verhoeven | May 1983 | A |
4402563 | Sinclair | Sep 1983 | A |
4482937 | Berg | Nov 1984 | A |
4523296 | Healy, Jr. | Jun 1985 | A |
4560222 | Dambach | Dec 1985 | A |
4664458 | Worth | May 1987 | A |
4717360 | Czaja | Jan 1988 | A |
4734060 | Kawawada et al. | Mar 1988 | A |
4762500 | Dola et al. | Aug 1988 | A |
4776803 | Pretchel et al. | Oct 1988 | A |
4815987 | Kawano et al. | Mar 1989 | A |
4850887 | Sugawara | Jul 1989 | A |
4867713 | Ozu et al. | Sep 1989 | A |
4898539 | Glover et al. | Feb 1990 | A |
4900271 | Colleran et al. | Feb 1990 | A |
4907990 | Bertho et al. | Mar 1990 | A |
4913664 | Dixon et al. | Apr 1990 | A |
4917616 | Demler, Jr. et al. | Apr 1990 | A |
4973271 | Ishizuka et al. | Nov 1990 | A |
4997390 | Scholz et al. | Mar 1991 | A |
5004426 | Barnett | Apr 1991 | A |
5046960 | Fedder | Sep 1991 | A |
5055054 | Doutrich | Oct 1991 | A |
5065282 | Polonio | Nov 1991 | A |
5066236 | Broeksteeg | Nov 1991 | A |
5077893 | Mosquera et al. | Jan 1992 | A |
5094623 | Scharf et al. | Mar 1992 | A |
5098311 | Roath et al. | Mar 1992 | A |
5127839 | Korsunsky et al. | Jul 1992 | A |
5161987 | Sinisi | Nov 1992 | A |
5163337 | Herron et al. | Nov 1992 | A |
5163849 | Fogg et al. | Nov 1992 | A |
5167528 | Nishiyama et al. | Dec 1992 | A |
5169337 | Ortega et al. | Dec 1992 | A |
5174770 | Sasaki et al. | Dec 1992 | A |
5181855 | Mosquera et al. | Jan 1993 | A |
5238414 | Yaegashi et al. | Aug 1993 | A |
5254012 | Wang | Oct 1993 | A |
5257941 | Lwee et al. | Nov 1993 | A |
5274918 | Reed | Jan 1994 | A |
5277624 | Champion et al. | Jan 1994 | A |
5286212 | Broeksteeg | Feb 1994 | A |
5288949 | Crafts | Feb 1994 | A |
5302135 | Lee | Apr 1994 | A |
5342211 | Broeksteeg | Aug 1994 | A |
5356300 | Costello et al. | Oct 1994 | A |
5356301 | Champion et al. | Oct 1994 | A |
5357050 | Baran et al. | Oct 1994 | A |
5382168 | Azuma et al. | Jan 1995 | A |
5387111 | DeSantis et al. | Feb 1995 | A |
5395250 | Englert, Jr. et al. | Mar 1995 | A |
5429520 | Morlion et al. | Jul 1995 | A |
5431578 | Wayne | Jul 1995 | A |
5475922 | Tamura et al. | Dec 1995 | A |
5552727 | Saito e tal. | Jun 1996 | A |
5558542 | O'Sullivan et al. | Sep 1996 | A |
5575688 | Crane, Jr. | Nov 1996 | A |
5586908 | Lorrain | Dec 1996 | A |
5586914 | Foster, Jr. et al. | Dec 1996 | A |
5590463 | Feldman et al. | Jan 1997 | A |
5609502 | Thumma | Mar 1997 | A |
5634821 | Crane, Jr. | Jun 1997 | A |
5637019 | Crane, Jr. et al. | Jun 1997 | A |
5672064 | Provencher et al. | Sep 1997 | A |
5697799 | Consoli et al. | Dec 1997 | A |
5713746 | Olson et al. | Feb 1998 | A |
5730609 | Harwath | Mar 1998 | A |
5741144 | Elco et al. | Apr 1998 | A |
5741161 | Cahaly et al. | Apr 1998 | A |
5766023 | Noschese et al. | Jun 1998 | A |
5795191 | Preputnick et al. | Aug 1998 | A |
5817973 | Elco et al. | Oct 1998 | A |
5833475 | Mitra | Nov 1998 | A |
5853797 | Fuchs et al. | Dec 1998 | A |
5860816 | Provencher et al. | Jan 1999 | A |
5871362 | Campbell et al. | Feb 1999 | A |
5876222 | Gardner et al. | Mar 1999 | A |
5892791 | Moon | Apr 1999 | A |
5893761 | Longueville | Apr 1999 | A |
5902136 | Lemke et al. | May 1999 | A |
5904581 | Pope et al. | May 1999 | A |
5908333 | Perino et al. | Jun 1999 | A |
5938479 | Paulson et al. | Aug 1999 | A |
5961355 | Morlion et al. | Oct 1999 | A |
5967844 | Doutrich et al. | Oct 1999 | A |
5971817 | Longueville | Oct 1999 | A |
5980321 | Cohen et al. | Nov 1999 | A |
5984690 | Riechelmann et al. | Nov 1999 | A |
5992953 | Rabinovitz | Nov 1999 | A |
5993259 | Stokoe et al. | Nov 1999 | A |
6022227 | Huang | Feb 2000 | A |
6042389 | Lemke et al. | Mar 2000 | A |
6042427 | Adriaenssens et al. | Mar 2000 | A |
6050862 | Ishii | Apr 2000 | A |
6068520 | Winings et al. | May 2000 | A |
6086386 | Fjelstad et al. | Jul 2000 | A |
6099332 | Troyan | Aug 2000 | A |
6116926 | Ortega et al. | Sep 2000 | A |
6116965 | Arnett et al. | Sep 2000 | A |
6123554 | Ortega et al. | Sep 2000 | A |
6125535 | Chiou et al. | Oct 2000 | A |
6129592 | Mickievicz et al. | Oct 2000 | A |
6139336 | Olson | Oct 2000 | A |
6146157 | Lenoir et al. | Nov 2000 | A |
6146203 | Elco et al. | Nov 2000 | A |
6150729 | Ghahghahi | Nov 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6154742 | Herriot | Nov 2000 | A |
6171115 | Mickievicz et al. | Jan 2001 | B1 |
6171149 | Van Zanten | Jan 2001 | B1 |
6179663 | Bradley et al. | Jan 2001 | B1 |
6190213 | Reichart et al. | Feb 2001 | B1 |
6212755 | Shimada et al. | Apr 2001 | B1 |
6219913 | Uchiyama | Apr 2001 | B1 |
6220896 | Bertoncini et al. | Apr 2001 | B1 |
6227882 | Ortega et al. | May 2001 | B1 |
6241535 | Lemke et al. | Jun 2001 | B1 |
6267604 | Mickievicz et al. | Jul 2001 | B1 |
6269539 | Takahashi et al. | Aug 2001 | B1 |
6280209 | Bassler et al. | Aug 2001 | B1 |
6293827 | Stokoe et al. | Sep 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6302711 | Ito | Oct 2001 | B1 |
6319075 | Clark et al. | Nov 2001 | B1 |
6322379 | Ortega et al. | Nov 2001 | B1 |
6322393 | Doutrich et al. | Nov 2001 | B1 |
6328602 | Yamasaki et al. | Dec 2001 | B1 |
6343955 | Billman et al. | Feb 2002 | B2 |
6347952 | Hasegawa et al. | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6354877 | Shuey et al. | Mar 2002 | B1 |
6358061 | Regnier | Mar 2002 | B1 |
6361366 | Shuey et al. | Mar 2002 | B1 |
6363607 | Chen et al. | Apr 2002 | B1 |
6364710 | Billman et al. | Apr 2002 | B1 |
6371773 | Crofoot et al. | Apr 2002 | B1 |
6375478 | Kikuchi | Apr 2002 | B1 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6386914 | Collins et al. | May 2002 | B1 |
6390826 | Affolter et al. | May 2002 | B1 |
6409543 | Astbury, Jr. et al. | Jun 2002 | B1 |
6414248 | Sundstrom | Jul 2002 | B1 |
6420778 | Sinyansky | Jul 2002 | B1 |
6431914 | Billman | Aug 2002 | B1 |
6435913 | Billman | Aug 2002 | B1 |
6435914 | Billman | Aug 2002 | B1 |
6457983 | Bassler et al. | Oct 2002 | B1 |
6461202 | Kline | Oct 2002 | B2 |
6464529 | Jensen et al. | Oct 2002 | B1 |
6471548 | Bertoncini et al. | Oct 2002 | B2 |
6482038 | Olson | Nov 2002 | B2 |
6485330 | Doutrich | Nov 2002 | B1 |
6494734 | Shuey | Dec 2002 | B1 |
6503103 | Cohen et al. | Jan 2003 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6506081 | Blanchfield et al. | Jan 2003 | B2 |
6520803 | Dunn | Feb 2003 | B1 |
6526519 | Cuthbert | Feb 2003 | B1 |
6527587 | Ortega et al. | Mar 2003 | B1 |
6537086 | MacMullin | Mar 2003 | B1 |
6537111 | Brammer et al. | Mar 2003 | B2 |
6540522 | Sipe | Apr 2003 | B2 |
6540558 | Paagman | Apr 2003 | B1 |
6540559 | Kemmick et al. | Apr 2003 | B1 |
6547066 | Koch | Apr 2003 | B2 |
6547606 | Johnston et al. | Apr 2003 | B1 |
6551140 | Billman et al. | Apr 2003 | B2 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6561849 | Naito | May 2003 | B2 |
6565388 | Van Woensel et al. | May 2003 | B1 |
6572409 | Nitta et al. | Jun 2003 | B2 |
6572410 | Volstorf et al. | Jun 2003 | B1 |
6589071 | Lias et al. | Jul 2003 | B1 |
6592381 | Cohen et al. | Jul 2003 | B2 |
6602095 | Astbury, Jr. et al. | Aug 2003 | B2 |
6633490 | Centola et al. | Oct 2003 | B2 |
6641411 | Stoddard et al. | Nov 2003 | B1 |
6641825 | Scholz et al. | Nov 2003 | B2 |
6652318 | Winings et al. | Nov 2003 | B1 |
6652319 | Billman | Nov 2003 | B1 |
6672907 | Azuma | Jan 2004 | B2 |
6692272 | Lemke et al. | Feb 2004 | B2 |
6695627 | Ortega et al. | Feb 2004 | B2 |
6717825 | Volstorf | Apr 2004 | B2 |
6736664 | Ueda et al. | May 2004 | B2 |
6746278 | Nelson et al. | Jun 2004 | B2 |
6749439 | Potter et al. | Jun 2004 | B1 |
6762067 | Quinones et al. | Jul 2004 | B1 |
6764341 | Lappoehn | Jul 2004 | B2 |
6776649 | Pape et al. | Aug 2004 | B2 |
6786771 | Gailus | Sep 2004 | B2 |
6799215 | Giroir et al. | Sep 2004 | B1 |
6805278 | Olson et al. | Oct 2004 | B1 |
6808399 | Rothermel et al. | Oct 2004 | B2 |
6808420 | Whiteman, Jr. et al. | Oct 2004 | B2 |
6824391 | Mickievicz et al. | Nov 2004 | B2 |
6835072 | Simons et al. | Dec 2004 | B2 |
6843686 | Ohnishi et al. | Jan 2005 | B2 |
6848944 | Evans | Feb 2005 | B2 |
6851974 | Doutrich | Feb 2005 | B2 |
6851980 | Nelson et al. | Feb 2005 | B2 |
6852567 | Lee et al. | Feb 2005 | B1 |
6863543 | Lang et al. | Mar 2005 | B2 |
6869292 | Johnescu et al. | Mar 2005 | B2 |
6884117 | Korsunsky et al. | Apr 2005 | B2 |
6890214 | Brown et al. | May 2005 | B2 |
6893300 | Zhou et al. | May 2005 | B2 |
6893686 | Egan | May 2005 | B2 |
6902411 | Kubo | Jun 2005 | B2 |
6913490 | Whiteman, Jr. et al. | Jul 2005 | B2 |
6918776 | Spink, Jr. | Jul 2005 | B2 |
6918789 | Lang et al. | Jul 2005 | B2 |
6932649 | Rothermel et al. | Aug 2005 | B1 |
6939173 | Elco et al. | Sep 2005 | B1 |
6945796 | Bassler et al. | Sep 2005 | B2 |
6951466 | Sandoval et al. | Oct 2005 | B2 |
6953351 | Fromm et al. | Oct 2005 | B2 |
6969280 | Chien et al. | Nov 2005 | B2 |
6976886 | Winings et al. | Dec 2005 | B2 |
6979215 | Avery et al. | Dec 2005 | B2 |
6979226 | Otsu et al. | Dec 2005 | B2 |
6981883 | Raistrick et al. | Jan 2006 | B2 |
6994569 | Minich et al. | Feb 2006 | B2 |
7021975 | Lappohn | Apr 2006 | B2 |
7044794 | Consoli et al. | May 2006 | B2 |
7057115 | Clink et al. | Jun 2006 | B2 |
7090501 | Scherer et al. | Aug 2006 | B1 |
7094102 | Cohen et al. | Aug 2006 | B2 |
7097506 | Nakada | Aug 2006 | B2 |
7101191 | Benham et al. | Sep 2006 | B2 |
7108556 | Cohen et al. | Sep 2006 | B2 |
7114964 | Winings et al. | Oct 2006 | B2 |
7118391 | Minich et al. | Oct 2006 | B2 |
7131870 | Whiteman, Jr. et al. | Nov 2006 | B2 |
7139176 | Taniguchi | Nov 2006 | B2 |
7172461 | Davis et al. | Feb 2007 | B2 |
7207807 | Fogg | Apr 2007 | B2 |
7239526 | Bibee | Jul 2007 | B1 |
7241168 | Sakurai et al. | Jul 2007 | B2 |
7281950 | Belopolsky | Oct 2007 | B2 |
7331802 | Rothermel et al. | Feb 2008 | B2 |
7422484 | Cohen et al. | Sep 2008 | B2 |
7448909 | Regnier | Nov 2008 | B2 |
20010012729 | Van Woensel | Aug 2001 | A1 |
20020098727 | McNamara et al. | Jul 2002 | A1 |
20020106930 | Pape et al. | Aug 2002 | A1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
20020127903 | Billman et al. | Sep 2002 | A1 |
20030143894 | Kline et al. | Jul 2003 | A1 |
20030171010 | Winings et al. | Sep 2003 | A1 |
20030203665 | Ohnishi et al. | Oct 2003 | A1 |
20030220021 | Whiteman et al. | Nov 2003 | A1 |
20040157477 | Johnson et al. | Aug 2004 | A1 |
20040224559 | Nelson et al. | Nov 2004 | A1 |
20040235321 | Mizumura et al. | Nov 2004 | A1 |
20050009402 | Chien et al. | Jan 2005 | A1 |
20050020109 | Raistrick et al. | Jan 2005 | A1 |
20050032401 | Kobayashi | Feb 2005 | A1 |
20050048838 | Korsunsky et al. | Mar 2005 | A1 |
20050079763 | Lemke et al. | Apr 2005 | A1 |
20050101188 | Benham et al. | May 2005 | A1 |
20050118869 | Evans | Jun 2005 | A1 |
20050170700 | Shuey et al. | Aug 2005 | A1 |
20050196987 | Shuey et al. | Sep 2005 | A1 |
20050215121 | Tokunaga | Sep 2005 | A1 |
20050227552 | Yamashita et al. | Oct 2005 | A1 |
20050277221 | Mongold et al. | Dec 2005 | A1 |
20050277315 | Mongold et al. | Dec 2005 | A1 |
20050287869 | Kenny et al. | Dec 2005 | A1 |
20060014433 | Consoli et al. | Jan 2006 | A1 |
20060024983 | Cohen et al. | Feb 2006 | A1 |
20060024984 | Cohen et al. | Feb 2006 | A1 |
20060046526 | Minich et al. | Mar 2006 | A1 |
20060051987 | Goodman et al. | Mar 2006 | A1 |
20060068641 | Hull et al. | Mar 2006 | A1 |
20060073709 | Reid | Apr 2006 | A1 |
20060116857 | Sevic et al. | Jun 2006 | A1 |
20060121749 | Fogg | Jun 2006 | A1 |
20060192274 | Lee et al. | Aug 2006 | A1 |
20060216969 | Bright et al. | Sep 2006 | A1 |
20060228912 | Morlion et al. | Oct 2006 | A1 |
20060232301 | Morlion et al. | Oct 2006 | A1 |
20070004287 | Marshall | Jan 2007 | A1 |
20070099455 | Rothermel et al. | May 2007 | A1 |
20070205774 | Minich | Sep 2007 | A1 |
20070207641 | Minich | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0 273 683 | Jul 1988 | EP |
0635910 | Jun 2000 | EP |
0 891 016 | Oct 2002 | EP |
1 148 587 | Apr 2005 | EP |
06-236788 | Aug 1994 | JP |
07-114958 | May 1995 | JP |
11185886 | Jul 1999 | JP |
2000-003743 | Jan 2000 | JP |
2000-003744 | Jan 2000 | JP |
2000-003745 | Jan 2000 | JP |
2000-003746 | Jan 2000 | JP |
WO 9016093 | Dec 1990 | WO |
WO 0129931 | Apr 2001 | WO |
WO 0139332 | May 2001 | WO |
WO 02101882 | Dec 2002 | WO |
2006031296 | Mar 2006 | WO |
WO 2006031296 | Mar 2006 | WO |
2006105535 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090124101 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60839071 | Aug 2006 | US | |
60846711 | Sep 2006 | US | |
60917491 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11837847 | Aug 2007 | US |
Child | 12355278 | US |