1. Field of the Disclosure
The present disclosure relates to an electrical connector, and more particularly to an electrical connector transmitting high frequency signals.
2. Description of Related Arts
The electrical connector for use with the CPU (Central Processing Unit) essentially includes an insulative housing with a plurality of contacts mounted upon a printed circuit board via corresponding solder balls. To assure the required mechanical contact force between the CPU and the contact in a limited space, a cantilever arm of the contact is popularly used. Anyhow, such a cantilever arm results in relatively high impedance during the high frequency transmission.
An improved electrical connector is desired.
Accordingly, an object of the present disclosure is to provide the contact used with an electrical connector with the required mechanical characters while lowering the negative effect due to high impedance and/or resonance.
To achieve the above object, an electrical connector includes an insulative housing with a plurality of passageways and a plurality of contacts received therein. The housing includes opposite mating surface and mounting surface in the vertical direction, and the passageways extend therethrough both the mating surface and the mounting surface. The contact includes an upstanding section retained in the passageway with a spring am extending from an upper region of the upstanding plate and above the mating surface, and a mounting leg extending from a lower region of the upstanding plate around the mounting surface. The spring arm forms a contacting section around a free end thereof. The contact further includes an extension extending from the upstanding section and optimally above the mating surface so as to be located between the spring arm and the mating surface in the vertical direction. The extension and the spring arm are partially overlapped in the vertical direction and results in the capacitance effect therebetween, thus lowering impedance thereof. In opposite, the extension may be applied to two sides of the spring arm toward the upstanding section for resulting in the capacitance effect.
Other objects, advantages and novel features of the disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the embodiments of the present disclosure. The reference numerals are referred throughout to the different embodiments. The first embodiment is shown in
An electrical connector 100 for connecting a CPU (not shown) to a printed circuit board (not shown), includes an insulative housing 10 with a plurality of passageways 11 and a plurality of contacts 20 received within the corresponding passageways 11 and equipped with the corresponding solder balls 30, respectively. Notably, the resistance of each contact 20 is 85+/−15 ohm. Understandably, a width of the contact may affect both the resistance characteristic electrically and the contact force mechanically. In other words, increasing the width of the contact for lowering the impedance is not proper solution because of the relatively large contact force with the CPU.
The housing 10 includes an upper surface 101 and a lower surface 102 opposite to each other in the vertical direction, and the passageways 11 extend through both the upper surface 101 and the lower surface 102. The contact 20 includes an upstanding/retaining section 21, a downward deflectable spring arm 22 extending upwardly from the upper region of the upstanding section 21 and above the upper surface 101 with a contacting region 221 around the free end for contacting the CPU, and a mounting leg 23 extending from a lower region of the upstanding section 21 around the mounting surface 102. A stationary extension 24 extends from the upper region of the upstanding section 21 and beside the spring arm 22, and is located either slightly above or flush with the upper surface 101.
In this embodiment, the extension 24, which extends in a horizontal plane and toward a center of the corresponding passageway 11 in a top view so as to be located above and partially aligned with the corresponding solder ball in the vertical direction, is essentially located between the spring arm 22 and the upper surface 101. The spring arm 22 and the extension 24 are partially overlapped with each other in the vertical direction so as to result in the capacitance effect therebetween in the vertical direction. Notably, a parallel relation between the spring arm 22 and the extension 24 is preferred during using. In other words, in this embodiment the extension 24 extends in a horizontal plane so that the region of the spring arm 22 coupled with the extension 22 in the vertical direction also extends horizontally when the spring arm is pressed downwardly by the CPU. Alternately, if the extension 22 extends in an oblique plane at fifteen degrees, such coupling region of the spring arm extends also in another oblique plane at the fifteen degrees. In this embodiment, the spring arm 22 is gradually decreased from the root to the free end in width while the extension 24 essentially has the constant width thereof.
In this embodiment, the upstanding section 21 includes a first retaining section 211 and the second retaining section 212 with the middle section 213 linked therebetween. The spring arm 22 extends from the upper region of the first retaining section 211, the extension 24 extends from the upper region of the second retaining section 212, and the mounting leg 23 extends from the middle section 213. A pair of barbs 2111 are formed on two outer sides of the first retaining section 211 and the second retaining section 212. Notably, the first retaining section 211, the second retaining section 212 and the middle section 213 therebetween all extend in an upright manner.
The contacts 20 include signal contacts 20S and grounding contacts 20G surrounding the signal contacts 20S. A plurality of recesses 12 are formed in the lower surface 102 and located intimately beside the corresponding grounding contacts 20G to receive the corresponding solder pastes 40 therein. In practice, the solder ball 30 is pre-adhered to the mounting leg 23 and successively melted to be mounted to the corresponding conductive pad on the printed circuit board on which the housing 10 is seated. The melted solder ball 30 extends laterally to be linked with the neighboring solder paste 40 so as to improve the circumferential relation with the corresponding neighboring signal for avoiding electro-magnetic interference and eliminating resonance. Ideally, the combination of the grounding contacts 20G and the neighboring solder pastes 40 substantially surrounds the corresponding signal contacts 20G. In other embodiments, the solder paste 40 may be directly attached to the corresponding mounting leg 23 of the grounding contact 20G initially.
While a preferred embodiment in accordance with the present disclosure has been shown and described, equivalent modifications and changes known to persons skilled in the art according to the spirit of the present disclosure are considered within the scope of the present disclosure as described in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0841375 | Sep 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4354729 | Grabbe | Oct 1982 | A |
4921430 | Matsuoka | May 1990 | A |
6572386 | Howell | Jun 2003 | B1 |
7074048 | Liao | Jul 2006 | B2 |
7297010 | Tsai | Nov 2007 | B2 |
7429200 | Lee | Sep 2008 | B2 |
7563105 | Liu | Jul 2009 | B2 |
7628661 | Liao | Dec 2009 | B2 |
7727032 | Szu | Jun 2010 | B2 |
7775805 | Liao | Aug 2010 | B2 |
7857632 | Liu | Dec 2010 | B2 |
7878823 | Fan | Feb 2011 | B2 |
7914314 | Szu | Mar 2011 | B2 |
8235734 | Ju | Aug 2012 | B2 |
8366453 | Chang | Feb 2013 | B2 |
8500458 | Chang | Aug 2013 | B2 |
8814603 | Chang | Aug 2014 | B2 |
8851904 | Chang | Oct 2014 | B2 |
20040067665 | Nakano | Apr 2004 | A1 |
20090269950 | Liao | Oct 2009 | A1 |
20100029102 | Chen | Feb 2010 | A1 |
20100267257 | Yeh | Oct 2010 | A1 |
20110008979 | Yeh | Jan 2011 | A1 |
20110086558 | Cheng | Apr 2011 | A1 |
20110111638 | Cheng | May 2011 | A1 |
20120028502 | Yeh | Feb 2012 | A1 |
20130237090 | Chang | Sep 2013 | A1 |
20140038438 | Chang | Feb 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20190089098 A1 | Mar 2019 | US |