Electrical connector utilizing magnets for transformable electronic device

Information

  • Patent Grant
  • 11469023
  • Patent Number
    11,469,023
  • Date Filed
    Monday, January 4, 2021
    3 years ago
  • Date Issued
    Tuesday, October 11, 2022
    a year ago
Abstract
Connector element includes an enclosure made of a generally non-magnetic material having an open face; an insulating plate with a plate aperture; a permanent magnet placed inside the enclosure, the magnet dimensions preventing egress from the enclosure through the plate aperture; a washer made of a conductive soft ferromagnetic material with a washer aperture being larger than dimensions of said permanent magnet, placed inside the enclosure. Also disclosed are transformable electronic devices, optionally including displays, toys and educational kits built using the self-actuating connector elements.
Description
BACKGROUND

Self-actuated connectors enable convenient means to create or break electric path supporting power or signal transmission when needed in devices where frequent mechanical engagement and disengagement of mechanical parts is needed. Some examples of such applications include, but not limited to transformable electronic devices, twisted puzzles and other toys with electronic functionality, and docking stations for mobile or movable electronic devices.


Of particular interest are connectors engaging two structural elements touching plain surfaces enabling electrical connectivity. In more general case, the adjacent surfaces of the structural elements in the vicinity of the electrically connecting element may be substantially fat, while being of more complex shape overall.


A common way to connect electrically the elements of transformable electronic devices has been the use of mechanical spring loaded pins.


Some known proximity actuated mechanical connectors comprise two cylindrical magnets rotatably mounted on brackets with first cylinder rotational symmetry axis parallel to the second cylinder rotational symmetry axis. The magnets have a north pole and South Pole alternatively positionable disposed on the outer surfaces of respective cylinders. The cylindrical magnets are allowed to rotate freely around the axes of the cylinders. When the magnets are brought into proximity, they actuate by rotating to engage into a position wherein the north pole of the first magnet is immediately proximate the south pole of the second magnet. The magnetic moments in this configuration are allowed to self-orient rotating relative to the plane defined by contact surfaces; the rotation in this case is restricted to the plane perpendicular to the contact plane and to the axes of the cylinders.


Magnetically actuated recessed contacts have been used to connect charging ports of electronic devices such as tablet computers, smart phones, laptop computers, etc. A typical configuration of such an electrical includes a floating contact having an exterior portion formed of electrically conductive material, an interior portion including a magnet, and a flexible circuit that includes a flexible attachment feature. The flexible attachment feature is electrically coupled to the floating contact and configured to accommodate movement of the floating contact between an engaged position and a disengaged position. The orientation of the magnet is fixed, its magnetic moment being permanently codirected with the direction of its allowed translational mechanical movement. When brought in proximity with an electronic device having its own magnet, the connector gets actuated and engages by sliding into a connected (engaged position). When the connection is broken by application of an external force (typically manually), a mechanical spring action element built into the connector returns the magnet into the disengaged position.


Magnetically actuated electrical connectors have been used including movable magnetic elements that move in response to an externally applied magnetic field. In some embodiments, the electrical connectors include recessed contacts that move from a recessed position to an engaged position in response to an externally applied magnetic field associated with an electronic device to which the connector is designed to be coupled. In some embodiments, the external magnetic field has a particular polarity pattern configured to draw contacts associated with a matching polarity pattern out of the recessed position. In this class of devices, movable magnetic elements are connected to spring-action mechanical elements, acting akin to “pogo-pins” when actuated by a magnetic force. The movement of the magnetic elements is only allowed along the axis normal to the contact surface; while a magnetic element may be allowed to rotate around its magnetic axis, the direction of the magnetic axis is preset normal to the contact surface, and no rotation of the magnetic axis of the magnetic element is allowed. This class of connectors lacks genderless conductivity and magnetic polarity invariance, and requires additional mechanical features to ensure proper connection.


In an alternative configuration, connector components include magnetic poles with a magnetic moment disposed perpendicular to and rotatable around a center axis normal to the connecting surfaces. The magnetic moment is thus restricted in a plane parallel to the connecting surface. When two identical connecting components are brought in proximity, they self-actuate by respective magnets rotating around the axis to align themselves in opposing directions and locking the connecting surfaces in to electrically conducting path.


Further, magnetically actuated electrical connectors has been disclosed comprising connector component switch magnetic axes allowed to rotate in planes parallel to the contact plane. When two identical magnetic elements are brought in proximity, they actuate by rotating into a position wherein magnetic poles of each connector component are proximate respective opposite polarity magnetic poles of the connector component. Once proximately actuated, the aligned magnets provide conducting path for a stable electrical connection.












TABLE 1






Magnetically





actuated



plane-
magnetically



restricted
actuated



rotating
recessed
Present


Performance
contacts
contacts
disclosure







Genderless connectivity
+

+


Initial plane orientation
+

+


invariance


translational and rotational


+


relative movement enabled.


two-step iterative connection


+


enabled


spring action
+
+
+


visual and tactile inconspicuity


+


tolerance to scratching,
+



chipping, contamination









Table 1 compares some functionalities important for the relevant applications of the current disclosure and the incumbent solutions.


Genderless connectivity is understood as a capability to connect each connector piece to any other connector piece, and the pieces employed in each specific pair are identical without distinction between male and female kinds.


Initial orientation invariance enables to engage proximate surfaces regardless of the initial orientation of the parallel surfaces; wherein the connector pieces are attracted and form a reliable contact regardless of the initial mutual orientation of the magnets providing actuation.


Possibility of connecting plane surfaces allowing their translational or rotational relative movement, including, but not limited to, rotating elements of a carousel, a rotor wheel, or a puzzle.


Transformable electronic devices, twist puzzles and other similar applications require adjacent surfaces to move relative to each other translationally or rotationally, including, but not limited to, rotating elements of a carousel, a rotor wheel, or a puzzle.


A common task of connecting electrical paths by bringing together plane surfaces is made more practical and convenient when it can be achieved in a two-step procedure, wherein the plane surfaces are first engaged, and then their relative position is manually adjusted interactively until the magnets engage and proximity-actuate electrical connection.


Contact elements providing spring-like action, without the use of springs or other elastic materials, resisting to a certain limit an external force pulling the connecting plane surfaces apart.


Connector visual and tactile inconspicuity: users of toys, puzzles, or electronic devices in general need not remember about the connection, nor care about precision alignment between the connectors, nor even think or know about the presence of said connectors.


Forming reliable connection without need to keep connecting plane surfaces thoroughly cleaned or intact, tolerant to considerable presence of scratching, chipping and moderate surface contamination.


Design comprising limited number of parts, mechanically robust, not prone to breaking into sharp, small, inhalable or swallowable pieces, no sharp edges or complex geometrical shapes.


SUMMARY

The present disclosure provides a connector element including an enclosure made of a generally non-magnetic material having an open face; an insulating plate with a plate aperture; a permanent magnet placed inside the enclosure, the magnet dimensions preventing egress from the enclosure through the plate aperture; a washer made of a conductive soft ferromagnetic material with a washer aperture being larger than dimensions of said permanent magnet, placed inside the enclosure. Also disclosed are transformable electronic devices, optionally including displays, toys and educational kits built using the self-actuating connector elements.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1A-1D show a magnet and a washer interacting in the absence of external forces.



FIGS. 2A-2C show the spring action of the permanent magnet interacting with the washer when external force is applied and removed.



FIGS. 3A-3D show a simplified configuration of a connector element.



FIG. 4A-4B show a preferred configuration of the connector element.



FIGS. 5A-5B show the allowed degrees of freedom for magnet rotation in the disclosed connecting elements.



FIG. 6A shows a cubelet.



FIG. 6B shows a transformative electronic device comprising functional cubelets.



FIGS. 7A-7B show a transformative electronic display device.



FIGS. 8A-8B show a transformative electronic display device with interactively controlled content displayed on sub-displays.



FIG. 9 shows a transformative electronic device with multiple magnetic ball joints.





DETAILED DESCRIPTION OF DRAWINGS


FIGS. 1A-1D illustrate the dynamic effects of magnet-washer interactions pertinent for building a stable polarity-indifferent connector.


Small spherical permanent magnets interacting with disk-shaped washers made of soft ferromagnetic magnetic material, display peculiar dynamic effects which we apply to develop electrical connectors disclosed hereby.


In one aspect of the current disclosure shown in FIGS. 1A-B, a magnet 110 has a north pole N and a south pole S with a magnetic axis 112 shown as an arrow connecting them. A steel washer 114 has an aperture 116 and a symmetry plane 118.


When the magnet is brought in proximity of the washer aperture, it tends to position itself as shown in FIGS. 1C-D, its diameter 120 aligned into the washer symmetry plane 118 by forces of attraction to the inside washer wall 122.


In one example, we experimented with a spherically shaped neodymium magnet 110 about 6 millimeter in diameter, a plain disk-shaped washer 112 made of generic magnetic steel with outside diameter 11 millimeter and an aperture 116 diameter 6.5 millimeter. We tried washer thickness 1.5 and 2 millimeters and observed no variation on performance.


In another example, we experimented and observed substantially the same results with neodymium magnet 110 having a diameter about 3 millimeters, washers 112 having aperture diameter 3.0 millimeter and 3.5 millimeters. As a general rule it is advisable to choose aperture diameter exceeding the spherical magnet diameter by about 10-15%.


In yet another example, the magnet may be of a non-spherical shape or/and the washer may be of not a simple disk configuration. Ball-shaped magnets can be replaced by magnets having any shape; what matters is that they should be able to rotate ensuring that magnet poles can turn under the action of the magnetic field. In such a case, the magnetic equator of an arbitrarily shaped magnet would align with the plane of a washer aperture.


The magnet 110 and the washer 114, even when axially symmetric, are mechanically unstable in the plane washer defined by the washer surfaces: as shown in FIGS. 1C-D, the magnet sticks to an arbitrary point on the inner surface 122 of the washer 114.



FIGS. 2A-2C illustrate and explain spring-action aspect of the connectors presently disclosed.


In this preferred configuration, the magnet 110 attaches to one of the arbitrary points on the inside surface 122 of aperture 116 of washer 114 as shown in FIG. 2A. In the absence of external acting forces, an equilibrium state is defined by alignment of a magnetic diameter 120 into the washer symmetry plane 118. If the magnet 110 is pushed or pulled out of alignment with a small external force F it moves out of equilibrium as shown in FIG. 2B. When out of equilibrium, none of the sphere diameters 120 is aligned to the washer symmetry plane 118, see FIG. 2B. When external force F is removed, the magnet is returned to the initial equilibrium state by a magnetic force A, as shown in FIG. 2C. Thus, the magnetic interaction between the spherical magnet 110 and the washer 114 made of soft ferromagnetic creates a spring-like (elastic) effect.


This effect is very useful when the ball needs to slide or roll over, e.g., a flat surface. The pressure against the flat surface pushes the magnet out of equilibrium, and the magnetic force pushes the magnet against the surface, enabling friction-driven rolling when pushed laterally. It is especially useful when two connecting elements are brought together by shearing, i.e., when one surface slides over the other until magnetic balls of the mating connectors come in contact.



FIGS. 3A-3D illustrate a generalized and simplified configuration of a connector element 150 based on the operation principle disclosed in FIGS. 1A-ID and FIGS. 2A-2C.


In one aspect of the disclosure, the magnet 110 is placed inside an enclosure 128 made of a generally non-magnetic material, said enclosure having an open face 126 and closed faces 124.


The enclosure 128 may generally be of an arbitrary form, including but not limited to the example shown as open-face hollow slab or a box with five closed faces 124.


The dimensions of the enclosure 128 need to be sufficient to enable the magnet 110 to rotate freely in all directions inside it, and to choose orientation of its magnetic poles of its own accord; it is preferred, however, that the dimensions of the enclosure be sufficiently small so that the magnet 110 is maintained in proximity to washer 114 and to the front surface plate 130.


In one embodiment of the present disclosure, the internal diameter of the washer can be greater than the ball magnet diameter. This design ensures greater freedom of the ball rotation, which makes self-orientation of the magnetic poles of the ball significantly easier. A disk-shaped washer can be replaced with an element of a different shape, or a set of elements; what matters is that this element should keep the magnetic ball in a certain position without fixing it rigidly, thus ensuring that self-orientation of the poles, ball rolling, and the spring effect are possible.


In another embodiment, the washer diameter may be smaller than the diameter of the magnetic ball; the connector may still be operable, if the magnet and the washer materials are chosen in such a way that the attracting force washer between them is relatively weak (in the opposite case, self-orientation of the ball poles is hampered).



FIGS. 3B-3D illustrate a self-actuated connector wherein two connector elements of the type shown in FIG. 3A are brought in proximity.


An insulating functional face 130 comprises a circular functional surface aperture 136, the diameter of said circular functional surface aperture being smaller than the diameter of the spherical magnet 110; an enclosure-facing surface 132 and outward-facing surface 134; the functional surface aperture 136 is chamfered or beveled with a wider side adjacent the enclosure 128.


When two identical connectors 150 and 250 are brought in proximity ash shown in FIG. 3C, the magnetic poles of the respective permanent magnets 110 and 210 are self-oriented such as to be pulled together. At the same time, each magnet is attracted to the respective washer 114 and 214 made of iron or any suitable soft ferromagnetic material, thus ensuring reliable electric connection. Conductors 138 and 238 are attached to washers 114 and 214 inside the enclosure forming a connected electric path.


The principal feature of the present disclosure is the possibility to operate successfully the planes, which can move relative to each other in the “shear” regime, as shown in FIGS. 7B, 8B and 9 below. Further figures illustrate typical applications of the connector.


In other embodiments of the present disclosure, a conducting washer may be fabricated of a magnetic material, e.g., iron, or a conductor having a different shape, but ensuring magnetic and electric contact with element.


As we discovered through extensive experimentation, the ball- or cylinder-shaped magnets need not be aligned perfectly due to presence of various gaps between the contact planes, yawns, misalignment of the details by the user, etc. However, the reliable contact is ensured by the magnetic properties of the balls or cylinders and by the space, which makes it possible to create a “slop”. Thus, perfect axial alignment is not required to actuate and join such connectors.


The magnetic conductive washer and the enclosure are shaped in such a way that the ball “hides” inside the enclosure, under its surface, and, being approached by a mating connector, resurfaces, responds to the other connector, and ensures the connection. It is possible, if the force of attraction between the magnetic balls exceeds that between the ball and the magnetic washer (it is seen in the figure that the magnetic attraction force between connector magnets is greater than the magnetic force between each magnet and the respective washer, which determines that the magnetic ball moves toward the other connector, when the latter comes closer and returns to the initial position, if the mating connector moves away).



FIGS. 4A-4B illustrate a preferred configuration of a self-actuated connector element adapted for use in transformable electronic devices, puzzle toys and other similar applications.


Similarly to the simplified connector element in FIGS. 3A-3D, the connecting element 450 comprises an insulating front plate 430 fabricated from a non-conducting and nonmagnetic material e.g., any plastic having appropriate properties. The front surface plate comprises four circular apertures 436 with chamfered or beveled edges.


The back plate 440 is configured to comprise four enclosures 428 shaped as partial-sphere surfaces. The apertures 436 and the enclosures 428 are sized with relation to neodymium magnets 410 as described earlier in the present disclosure. The four conductive washers 414 in this case are held immediately adjacent the enclosure-facing surface 432 of the connecting element 450.



FIGS. 5A-5B illustrate the possibility for mutual rearrangement of the permanent magnets 110 and 210 when two connecting elements, similar to connectors 150 and 250 shown in FIG. 3D, or connecting elements 450 shown in FIGS. 4A-4B are brought in proximity.


The axis Z in FIGS. 5A-5B is chosen in the direction normal to the front surfaces 134 and 234 as in FIGS. 3A-3B, or 434 in FIG. 4A. Axes X and Y are chosen in a plane normal to Z, and thus parallel to surfaces 134 and 234.


Vectors M1 and M2 represent magnetic moments of the magnets 110 and 210 respectively. Vector M1XY represents the projection of vector M1 onto the XY plane perpendicular to Z axis.


The spatial direction of vector M1 in space can be fully described by the polar angle θ1 measured from axis Z and the azimuthal angle φ1 measured in plane XY between axis X and M1XY. Similarly, polar and azimuthal angles fully describe the spatial direction of M2.


The arrangements similar to the examples shown in FIGS. 3A-4B enable unrestricted rotation of magnets 110 and 210 adjusting respective polar and azimuthal angles as the connector elements are brought in proximity.


The essence of the present disclosure is that the ball- or cylinder-shaped magnets are not affixed either to the body of the connecting element enclosure, or to the washers, or any other element of the structure, or on any particular axis, and allowed to rotate around it.


Therefore, the magnets have no fixed axis set by design and are allowed to assume arbitrary orientation in space. The enclosures enable some lateral displacement in all three special dimensions, without restricting free rotation of the magnets. In its free state, with no contact with an identical connector, the magnet can be turned in any direction. However, due to the magnetic properties of the washer located at the contact point (or any other conductor having magnetic properties), the magnet ball remains in contact with this conductor due to its own magnetic properties.



FIG. 6A shows a cubelet 660 comprising three connecting elements 650, 652 and 654. The cubelet 660 is assembled on a frame 664 of generally cubic shape with one vertex 670 (a “core vertex” hereinafter) truncated to form a convenient attachment and electrical contact to a ball joint 666 helping to form the redundant data and power distribution bus.


Bus is a common term in the industry and defines a connection mechanism through which data or power is imparted to other parts of transformable devices of the present disclosure. This bus is commonly referred to the data over power (DoP) bus and provides both the electrical and data connection necessary to interface between the cubelets. The DoP bus is comprised of connector elements exemplified in FIGS. 3A-3D, 4A4D and such, the ball joint 666, the core vertex 670 and additional bus components inside the cubelets.


For example, the vertex may be machined into a segment of a concave sphere, the center of the sphere coincident with the cubelet vertex, and the spherical segment curvature radius substantially equal to the radius of a ball joint shown in FIGS. 6B and 9.


In other embodiments, the vertex may be shaped in other shapes, as long as they provide reliable electrical connection to form a data and power distribution bus throughout the electronic device.


The connecting elements 650, 652 and 654 are mounted on mutually perpendicular faces immediately adjacent the vertex 670. The cubelet may further comprise various electronic and electrical elements with varied functionality including but not limited to electrical passthroughs, passive electrical components (capacitors, inductors, resistors), sensors, LEDs, batteries, other charge storing devices, battery protection circuitry, diodes setting current polarities, power conditioning circuits, antennas, microprocessors converting analogue signals into digital form and vice versa, small electrical motors of various configurations, means for signal processing operations, gaining and wireless controls, display control electronic modules, wireless links, Bluetooth support functionalities, power buses, and interfaces to external computers and analogue devices. The connecting elements 650, 652 and 654 mounted on the module faces are adapted to support power and control connections between various functionalities of the adjacent modules, e.g. between module 670 and 690.



FIG. 6B show how eight cubelets 660, 665, 670, 675 (not visible), 680, 685 (removed for illustrative purposes), 690 and 695 are assembled into a cube with each module truncated vertex 670 forming a ball joint to a central element 666.


Being built into the surface of the functional building module, the connecting elements come into action (ensures transmission of an electric current and/or signals), when aligned (e.g., coaxially) with respective identical mating connectors on the surface of an adjacent the functional building module moving relative to the former.


This arrangement allows to rotate groups of four cubelets around the main three axis of symmetry of the cube. This presents an opportunity to switch and reconfigure electrical connections between the cubelets. Thus, the assembly functions as a transformable electronic device.


For example, when the group comprised of cubelets 660, 665, 670 and 675 is rotated around axis KL in the direction shown with arrow P in FIG. 6B, the four viewer-facing contacts defined by the apertures 636 switch from being connected to respective aperture contacts on the immediately adjacent surface of cubelet 685 to aperture contacts on the respective surface of the cubelet 680. Thus, the electronic elements in the module 675 are switched from a first functional configuration defined by direct electric contact to the elements of module 685 to a second functional configuration defined by direct electric contact to the elements of module 680.


During this rotational switching, the kinematic ball joint formed by the ball 666 and the adjacent truncated vertexes 670 maintains continuity of the transformable device data and power distribution bus.


These switching and transformative capabilities enable configuring sets of cubelets like 660 into functional electronic devices including but not limited to remote controls, gaming devices, communication devices and toy kits.



FIG. 7A illustrates a preferred configuration of the transformable electronic device 700, wherein information displays are attached on each outward face of every module. Each of the cubelet modules 660, 665, 670, 675, 680, 685 visible in FIG. 7A, and 690 which is not visible, has information displays attached on faces not immediately adjacent the vertex truncated to form electric contact to a central ball magnetic joint, as shown in FIGS. 6A-6B.


For the purpose of the present disclosure, transformable display means a display, consisting of separate displays of smaller size, which can change the position relative to each other; peripheral element—in contrast to the central element—located outside the device, so it can be always visible; the outward face of the peripheral element is the flat surface of the peripheral element facing the user; the inward face of the peripheral element—the flat surface of the peripheral element, facing away from the user, that is, towards a central unit.


For example, three electronic displays 692, 694 and 696 are attached to the outward-facing faces of the functional building module 690.


The electronic and electrical components inside the functional building modules are adapted to display visual content on each of the displays on the outward-facing faces of the cubelets, and to sense relative position of the functional position of the modules.


The relative position of the modules comprising the transformable device, and the change in their relative position which happens when the device is transfigured as illustrated in FIG. 7B serve as inputs for microprocessors configuring the content displayed on each of the displays.



FIGS. 8A-8B illustrate a preferred configuration of the transformable electronic display device 800, wherein smaller-size information displays (sub-displays hereinafter) are attached on each outward face of cubelets 660, 665, 670, 675, 680, 685 visible in FIG. 7A, and 690 which is not visible. The sub-displays are attached onto faces not immediately adjacent the vertex truncated to form electric contact to a central ball magnetic joint, as shown in FIGS. 6A-6B.


As shown, transforming the device from one state to another by rotating a group of four cubelets around the ball joint relative to another group of four serves as a means of inputting information that leads to interactive change in the contact displayed on the transformative display. The input variables include: composition of the rotated group of elements, direction of relative rotation, and rotation angle (typically in increments of 90 degrees). Different type of content, e.g. gaming, communication, social-network status, or remote-control inputs may be displayed and accessed using the transformative operations.



FIG. 9 illustrates yet another embodiment of the invention, the transformative electronic device 900 containing multiple ball joints like 966 coupled to cubelets like 960, 965, 970, 975 (this module is not visible in the view presented in this figure), 980, 985, 990 and 995.


These elements can be rotated around ball joints in groups of four, like e.g. groups 996, 998, and the group composed of cubelets 980, 985, 990 and 995. The outward faces of the cubelets may be equipped with subdisplays, forming a transformative display, or the video content controlled by the device rotational transformations may be fed to an external display.

Claims
  • 1. A transformable electronic device comprising: data and power distribution interconnect conductors;a plurality of display modules electrically coupled to the data and power distribution interconnect conductors, each of the plurality of display modules comprising one or more display screens; anda plurality of electrical connectors electrically coupled to at least one of the one or more display screens, each electrical connector comprising:an enclosure made of a generally non-magnetic material and including an insulating plate comprising a plate aperture;a permanent magnet situated inside the enclosure, the permanent magnet having a diameter that is larger than the plate aperture to prevent egress of the permanent magnet from the enclosure through the plate aperture; anda washer formed from a conductive soft ferromagnetic material comprising a washer aperture, the washer aperture being larger than the a dimension of the permanent magnet, the washer being situated proximate the insulating plate, wherein the permanent magnet and the washer are magnetically attracted so as to remain in physical contact, and wherein the washer is electrically connected to at least one conductor situated within the corresponding display module; andcircuitry situated within at least one of the plurality of display modules and communicatively coupled to the one or more display screens of each of the display modules via pairs of interfaced electrical connectors of the plurality of the electrical connectors.
  • 2. The device of claim 1, wherein the plate aperture has a round shape.
  • 3. The device of claim 1, wherein the permanent magnet has a spherical shape.
  • 4. The device of claim 1, wherein the washer aperture has a shape corresponding to a cross-section of the permanent magnet shape.
  • 5. The device of claim 1, wherein the one or more display screens of each display module are a plurality of display screens oriented orthogonally with respect to each other.
  • 6. The device of claim 1, further comprising: a ball joint situated in the center of the device and comprising the data and power distribution interconnect conductors.
  • 7. The device of claim 6, wherein each of the plurality of display modules further comprises: a core vertex immediately adjacent the ball joint, the core vertex truncated to form an electrical connection to the ball joint.
  • 8. The device of claim 6, wherein each pair of interfaced electrical connectors includes a first electrical connector and a second electrical connector, wherein the first and the second electrical connectors are movably positionable relative to one another in a first position by pivoting motion of at least a subset of the display modules about the ball joint that causes a shearing between adjacent surfaces of the subset of the display modules, and wherein in the first position, respective insulating plates are immediately adjacent and facing each other, with respective magnets contacting each other and contacting respective washers, such that the respective magnets and the respective washers form a continuous electrically-conductive path.
  • 9. The device of claim 8, wherein the first and the second electrical connectors are movably positionable relative to one another within a misalignment range about the first position while the continuous electrically-conductive path is maintained.
  • 10. The device of claim 8, wherein the first and the second electrical connectors are movably positionable relative to one another in a second position wherein the continuous electrically-conductive path is broken.
  • 11. The device of claim 10, wherein: in the first position the permanent magnet of each electrical connector of each pair of the electrical connectors partially protrudes from its respective enclosure; andin the second position the permanent magnet of each electrical connector of each pair of the electrical connectors is recessed in its enclosure.
  • 12. The device of claim 1, wherein the permanent magnet of each electrical connector is free to rotate to assume any orientation in response to a predominant magnetic field.
  • 13. The device of claim 1, wherein the device has a total of eight display modules.
  • 14. The device of claim 1, wherein the plate aperture is of a circular shape.
  • 15. The device of claim 1, wherein the washer aperture is of a circular shape.
  • 16. The device of claim 1, further comprising: at least one battery for providing power to the plurality of display modules, wherein the at least one battery is contained within at least one of the plurality of display modules.
PRIOR APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/074,787 filed Oct. 19, 2017 (now U.S. Pat. No. 10,886,050), which was submitted under 35 US 371 as a national-stage application derived from International Application No. PCT/US2017/57296, which claimed priority under PCT Section 8 to U.S. Provisional Application 62/410,786 filed Oct. 20, 2016, and U.S. Provisional Application 62/462,715 filed Feb. 23, 2017, the disclosures of all of which are incorporated by reference into the present disclosure in their entirety and for all purposes. The present disclosure relates to self-actuated electrical connectors, transformable electronic devices and toy kits enabled by such connectors.

US Referenced Citations (37)
Number Name Date Kind
3576936 Fischer May 1971 A
3655201 Nichols Nov 1972 A
4513970 Opresco et al. Apr 1985 A
4546267 Urfirer Oct 1985 A
5941714 Gorbet Aug 1999 A
6469901 Costner Oct 2002 B1
6919787 Macken Jul 2005 B1
6974130 Sugden Dec 2005 B2
7322873 Rosen et al. Jan 2008 B2
7828556 Rodrigues Nov 2010 B2
7862415 Ghaly Jan 2011 B1
7997970 Katz et al. Aug 2011 B2
8187006 Rudisill et al. May 2012 B2
8395465 Lauder et al. Mar 2013 B2
8873239 McRae et al. Oct 2014 B2
9111382 Ueno et al. Aug 2015 B2
9300081 Rudisill et al. Mar 2016 B2
9597607 Bdier Mar 2017 B2
9755356 Kim et al. Sep 2017 B1
9907195 Montazeri Feb 2018 B2
10063009 Szeto Aug 2018 B2
10376804 Lu Aug 2019 B2
10512853 MacDonald et al. Dec 2019 B2
10886050 Osipov Jan 2021 B2
20100197148 Rudisill et al. Aug 2010 A1
20100308536 Stolten Dec 2010 A1
20110084474 Paden et al. Apr 2011 A1
20120258436 Lee Oct 2012 A1
20120302303 Rosendo Nov 2012 A1
20130109267 Schweikardt et al. May 2013 A1
20140325413 Delfino Oct 2014 A1
20140363987 Hodge et al. Dec 2014 A1
20160268729 Szeto Sep 2016 A1
20170264046 Szeto Sep 2017 A1
20180311566 Shin Nov 2018 A1
20190358549 Osipov et al. Nov 2019 A1
20200161037 Osipov May 2020 A1
Foreign Referenced Citations (14)
Number Date Country
1034181446 Dec 2013 CN
2037566509 Aug 2014 CN
106110651 Nov 2016 CN
2130569 Dec 2009 EP
2009512484 Mar 2009 JP
2009291462 Dec 2009 JP
20070104336 Oct 2007 KR
1020130023842 Mar 2013 KR
1020160083948 Dec 2016 KR
2556489 Jul 2015 RU
2010088695 Aug 2010 WO
2010120780 Oct 2010 WO
2012158616 Nov 2012 WO
2015070321 May 2015 WO
Non-Patent Literature Citations (31)
Entry
Examination Report No. 1 dated Dec. 16, 2019 in Australian Patent Application No. 2017345410.
Response to Examination Report No. 1 dated Dec. 16, 2019 filed in Australian Patent Application No. 2017345410 on Jan. 8, 2020.
Examination Report dated Aug. 28, 2020 in Australian Patent Application No. 201822506.
European Search Report dated Sep. 18, 2020 in European Patent Application No. 17861796.5.
Response to European Search Report dated Sep. 18, 2020 in European Patent Application No. 17861796.5 filed Apr. 6, 2021.
European Search Report dated Dec. 17, 2020 in European Patent Application No. 18756842.3.
Response to European Search Report dated Dec. 17, 2020 in European Patent Application No. 18756842.3 filed Jul. 29, 2021.
Examination Report dated Aug. 18, 2020 in Indian Patent Application No. 201947019145.
Response to Examination Report dated Aug. 18, 2020 in Indian Patent Application No. 201947019145 filed Feb. 16, 2021.
International Search Report and Written Opinion issued in International Application No. PCT/US2017/057296 dated Feb. 1, 2018.
Notice of Reasons for Refusal dated Aug. 4, 2020 in Japanese Patent Application No. 2019-543169.
Response to Notice of Reasons for Refusal dated Aug. 4, 2020 in Japanese Patent Application No. 2019-543169 filed Feb. 18, 2021.
Notice of Reasons for Rejection dated Jun. 29, 2021 in Japanese Patent Application No. 2019-543169.
Response to Notice of Reasons for Rejection dated Jun. 29, 2021 in Japanese Patent Application No. 2019-543169 filed Sep. 29, 2021.
Notice of Reasons for Refusal dated Sep. 29, 2020 in Japanese Patent Application No. 2019-567222.
Response to Notice of Reasons for Refusal dated Sep. 29, 2020 in Japanese Patent Application No. 2019-567222 filed Mar. 25, 2021.
Notification of Opinion Submission dated Oct. 15, 2020 in Korean Patent Application No. 10-2019-70144440.
Response to Notification of Opinion Submission dated Oct. 15, 2020 in Korean Patent Application No. 10-2019-7014440 filed Mar. 15, 2021.
Notification of Opinion Submission dated Feb. 16, 2021 in Korean Patent Application No. 10-2019-7024861.
Response to Notification of Opinion Submission dated Feb. 16, 2021 in Korean Patent Application No. 10-2019-7024861 filed May 17, 2021.
Notice of Preliminary Rejection dated Jan. 4, 2022 in Korean Patent Application No. 10-2021-7040485.
[Ball Mouse] The most popular item in FPS games, it must be a ball mouse, Internet Naver end of blog post, Mar. 29, 2013.
File History of parent U.S. Appl. No. 16/074,787, filed Aug. 2, 2018, now U.S. Pat. No. 10,886,050 issued Jan. 5, 2021.
File History of U.S. Appl. No. 16/537,549, filed Aug. 10, 2019, now U.S. Pat. No. 11,000,772 issued May 11, 2021.
File History of U.S. Appl. No. 16/986,069, filed Aug. 5, 2020, now U.S. Pat. No. 10,886,051 issued Jan. 5, 2021.
Office Action dated Sep. 21, 2021 in Canadian Patent Application No. 3,092,094.
Response to Office Action dated Sep. 21, 2021 in Canadian Patent Application No. 3,092,094 filed Jan. 19, 2022.
Office Action dated Aug. 25, 2021 in Canadian Patent Application No. 3,079,193.
Response to Office Action dated Aug. 25, 2021 in Canadian Patent Application No. 3,079,193 filed Dec. 23, 2021.
Examination Notice dated Nov. 18, 2021 in Chinese Patent Application No. 201780061382.0.
Preliminary Office Action dated Feb. 15, 2022 in Brazilian Patent Application No. BR112019008034-1.
Related Publications (1)
Number Date Country
20210125763 A1 Apr 2021 US
Provisional Applications (2)
Number Date Country
62410786 Oct 2016 US
62462715 Feb 2017 US
Continuations (1)
Number Date Country
Parent 16074787 US
Child 17141123 US