1. Field of the Invention
The present invention relates to electrical connectors, more particularly to electrical connectors with additional mating ports for mating with corresponding connectors.
2. Description of Related Art
Personal computers (PC) are used in a variety of ways for providing input and output. Universal Serial Bus (USB) is a serial bus standard to the PC architecture with a focus on computer telephony interface, consumer and productivity applications. The design of USB is standardized by the USB Implementers Forum (USB-IF), an industry standard body incorporating leading companies from the computer and electronic industries. USB can connect peripherals such as mouse devices, keyboards, PDAs, gamepads and joysticks, scanners, digital cameras, printers, external storage, networking components, etc. For many devices such as scanners and digital cameras, USB has become the standard connection method.
As of 2006, the USB specification was at version 2.0 (with revisions). The USB 2.0 specification was released in April 2000 and was standardized by the USB-IF at the end of 2001. Previous notable releases of the specification were 0.9, 1.0, and 1.1. Equipment conforming to any version of the standard will also work with devices designed to any previous specification (known as: backward compatibility).
USB supports three data rates: 1) A Low Speed rate of up to 1.5 Mbit/s (187.5 KB/s) that is mostly used for Human Interface Devices (HID) such as keyboards, mice, and joysticks; 2) A Full Speed rate of up to 12 Mbit/s (1.5 MB/s); (Full Speed was the fastest rate before the USB 2.0 specification and many devices fall back to Full Speed. Full Speed devices divide the USB bandwidth between them in a first-come first-served basis and it is not uncommon to run out of bandwidth with several isochronous devices. All USB Hubs support Full Speed); 3) A Hi-Speed rate of up to 480 Mbit/s (60 MB/s). Though Hi-Speed devices are commonly referred to as “USB 2.0” and advertised as “up to 480 Mbit/s”, not all USB 2.0 devices are Hi-Speed. Hi-Speed devices typically only operate at half of the full theoretical (60 MB/s) data throughput rate. Most Hi-Speed USB devices typically operate at much slower speeds, often about 3 MB/s overall, sometimes up to 10-20 MB/s. A data transmission rate at 20 MB/s is sufficient for some but not all applications. However, under a circumstance transmitting an audio or video file, which is always up to hundreds MB, even to 1 or 2 GB, currently transmission rate of USB is not sufficient.
As discussed above, with limited data transmission speed of the USB 2.0 connectors, there is a need to design electrical connectors with additional mating ports for high-speed signal transmission.
An electrical connector includes an electrical receptacle and an electrical plug for mating with the electrical receptacle. The electrical receptacle includes a first receiving cavity, a second receiving cavity communicating with the first receiving cavity, a first tongue portion extending into the first receiving cavity and a second tongue portion extending into the second receiving cavity. A plurality of first contacts are disposed on a mounting surface of the first tongue portion. A plurality of second contacts are disposed on opposite first and second surfaces of the second tongue portion and protrude into the second receiving cavity. The first receiving cavity is essentially narrower than the second receiving cavity. The first and the second tongue portions are parallel to each other.
An electrical plug includes a first opening, a second opening and a metal shield shielding the first and the second openings. A plurality of first plug contacts protrude into the first opening. A plurality of second plug contacts are exposed to the second opening. The first and the second openings are separated by a separate plate in condition that the first and the second plug contacts are disposed on opposite first and second sides of the separate plate, respectively.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known circuits have been shown in block diagram form in order not to obscure the present invention in unnecessary detail. For the most part, details concerning timing considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present invention and are within the skills of persons of ordinary skill in the relevant art.
Within the following description, a standard USB 2.0 connector, receptacle, plug, and signaling all refer to the USB architecture described within the Universal Serial Bus Specification, 2.0 Final Draft Revision, Copyright December, 2002, which is hereby incorporated by reference herein.
Referring to
Referring to
The first contacts 2 of the preferred embodiment are non-elastic. Each first contact 2 comprises a plate-shaped contact portion 21, a bending portion 22 perpendicular to the contact portion 21 and a tail portion 23 on a distal end of the bending portion 22. The contact portions 21 are attached to the grooves 111 of the first tongue portion 11 so that they can be exposed to the first receiving cavity 110 for mating with the electrical plug 200. As best shown in
The second contacts 3 of the preferred embodiment are elastic. Each second contact 3 comprises a convex shape elastic contact section 31, a bending section 32 perpendicular to the contact section 31 and a tail section 33 on a distal end of the bending section 32. The contact sections 31 are located on the passageways 123, 124 of the second tongue portion 12 and extend beyond the first and the second surfaces 121, 122 to protrude into the second receiving cavity 120.
In assembly, the bending portions 22 of the first contacts 21 are located on peripheral side of the bending sections 32 of the second contacts 3 so that the depth D1 of electrical receptacle 100 is much larger than the corresponding depth D3 of the existing B-type USB 2.0 receptacle 300 as shown in
The electrical receptacle 100 includes a lower port compatible to the existing standard B-type USB 2.0 plug shown in
In order to organize all the tail portions 23 and tail sections 33 of the first and the second contacts 2, 3, the electrical receptacle 100 includes a spacer 5 attached to a rear face 13 of the insulative housing 1. The spacer 5 defines a plurality of through holes 51 for the tail portions 23 and tail sections 33 extending therethrough so that the tail portions 23 and tail section 33 can be easily mounted to the PCB.
The metal shield 4 includes a front metal shield 41 enclosing the insulative housing 1, a rear metal shield 42 attached to the front metal shield 41. The front metal shield 41 is stamped from a unitary one-piece metal sheet to have a top wall 411, a pair of side walls 412 and a pair of front walls 413 bending inwardly from front ends of the side walls 412. Each side wall 412 includes an engaging arm 414 extending into the second receiving cavity 120 for abutting against the electrical plug 200 or the standard B-type USB 2.0 plug 400. Each side wall 414 further includes a plurality of supporting portions 415 abutting against the spacer 5 so that the spacer 5 can be firmly fixed to the insulative housing 1. The rear metal shield 42 includes a rear wall 421 attached to the insulative housing 1 and a pair of arms 422 abutting against the side wall 412 of the front metal shield 41.
The electrical plug 200 includes an insulator 6, a plurality first and second plug contacts 7, 8 retained in the insulator 6, a metal shell 9 enclosing the insulator 6 and a cable 60 electrically connecting with the first and the second plug contacts 7, 8. The insulator 6 is frame-shaped and includes an upper separate plate 61, a bottom portion 62 opposite to the separate plate 61 and a pair of side portions 63 connecting the separate plate 61 and the bottom portion 62. The metal shell 9 has a lower portion 91 and an upper portion 92 narrower than the lower portion 91. The upper portion 92 includes a top wall 921 and a pair of first side walls 922. The lower portion 91 includes a bottom wall 911 attached to the bottom portion 62 of the insulator 6, and a pair of second side walls 912 attached to the side portions 63 of the insulator 6. The separate plate 61 includes a pair of slant portions 611 on lateral sides thereof. The second side walls 912 comprise a pair of corresponding slant sections 913 attached to the slant portions 611 for mating with the chamfered portions 13, 14 of the electrical receptacle 100. A first opening 64 is enclosed by the top wall 921, a pair of first side walls 922 and the separate plate 61. The insulator 6 defines a second opening 65 enclosed by the separate plate 61, the pair of side portions 63 and the bottom portion 62. That is to say the first and the second openings 64, 65 are separated by the separate plate 61 which includes a first side 612 exposing to the first opening 64 and a second side 613 exposing to the second opening 65. The second opening 65 is much bigger than the first opening both in height and width as best shown in
In
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the tongue portion is extended in its length or is arranged on a reverse side thereof opposite to the supporting side with other contacts but still holding the contacts with an arrangement indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3986766 | Sochor | Oct 1976 | A |
5667393 | Grabbe et al. | Sep 1997 | A |
6062892 | Meng et al. | May 2000 | A |
6334793 | Amoni et al. | Jan 2002 | B1 |
7354282 | Margulis et al. | Apr 2008 | B2 |
20060014431 | Shuey et al. | Jan 2006 | A1 |
20070049115 | Igarashi et al. | Mar 2007 | A1 |