This invention relates generally to an electrical connector that is destined to become part of an electrical connector assembly.
Some electrical connector assemblies, such as the electrical connector assembly disclosed in U.S. Pat. No. 6,846,191 B2 issued to Jon C. Hobbs et al. Jan. 25, 2005, comprise mating electrical connectors that have relatively high engagement forces. Consequently, the connector bodies of the respective electrical connectors are equipped with a cam lever and cam followers, such as the cam lever 90 and cam followers 96 illustrated in the Hobbs et al. '191 patent. Mating the electrical connectors is mechanically assisted by engaging the cam lever with the cam followers and then pivoting the cam lever to a lock position drawing the electrical connectors together into mating engagement.
For other examples of similar electrical connector assemblies, see U.S. Pat. No. 6,565,372 B2 issued to John H. Bakker, et al. May 20, 2003, for an electrical connector having a cam mating device and U.S. Pat. No. 6,739,889 B1 issued to Barry M. Daggett et al May 25, 2004 for an electrical distribution center assembly.
In many instances, particularly in the case of automotive electrical distribution center assemblies, the cam lever is attached to an electrical connector at one location. The electrical connector with the cam lever is then transported to another location where the electrical connector is attached to a mating electrical connector equipped with cam followers with the mechanical assistance of the cam lever.
This invention provides a electrical connector that is equipped with a cam lever and a cam lever retainer to prevent detachment of the cam lever during transit of the electrical connector from one location to another location for attachment to a mating electrical connector equipped with cam followers.
Referring now to
Electrical connector 10 is equipped with a cam lever 14 that is pivotally attached to connector body 12. Cam lever 14 engages cam followers of the mating electrical connector (not shown) to draw the electrical connectors together as explained in more detail below. Cam lever 14 is generally U-shaped with dual cam lever arms 16 that are spaced apart and connected at one end with a bridge 18 that acts as a handle. Cam lever arms 16 are pivotally attached to opposite sides of connector body 12 by pivot pins 20 that project outwardly from the opposite sides of the connector body 12 into pivot holes in the cam lever arms 16. Cam lever arms 16 are pivoted together by bridge 18 from a transit position shown in solid line in
Cam lever 14 is held in the transit position by lock arms 22 that are attached to the respective cam lever arms 16 in cantilever fashion. The free end portions of lock arms 22 have holes that receive lock pins 24 that project outwardly from the opposite sides of the connector body 12 to hold cam lever 14 in the transit position. Cam lever 14 may made of a plastic or other resilient electrically insulative material so that the hub portions 26 of the cam lever arms 16 can be spread apart for pivotal attachment to connector body 12. Hub portions 26 are spread apart, the holes aligned with the pivot pins 20 and then the lever arms 16 are simply released to attach the cam lever 14 pivotally to the pivot pins 20 in an economical manner. The free end portions of lock arms 22 may also be spread apart and their respective holes aligned with the lock pins 24. Lock arms are then also released to hold cam lever 14 in the transit position shown in solid line in
Cam lever arms 16 have cam slots 30 in their respective outer faces. When electrical connector 10 is plugged a short way into the mating electrical connector (not shown) with the cam lever arms 22 in the transit position shown in solid line in
As indicated above in the background, electrical connector 10 may be equipped with cam lever 14 at one location and then transported to another location for connection to the mating electrical connector equipped with the cam followers. Electrical connector 10 is provided with a cam lever retainer 32 that assures that the cam lever 12 does not detach from the connector body 12 during transit.
The cam lever retainer 32 comprises radial channels 34 on opposite sides of connector body 12 and cooperating radial fins 36 on cam lever arms 16. Fins 36 are disposed in the respective channels 34 when cam lever 14 is in the transit position as shown in solid line
Radial channels 34 may be provided in a low profile manner by integral side ears 35 of connector body 12 that are about the same width as the cam lever arms 16 as shown in
As indicated above, cam lever 14 is attached to connector 10 by spreading cam lever arms 16 apart, aligning the pivot holes with the pivot pins 20 and releasing cam lever arms 16. Fins 36 are shaped so that the fins 36 are disposed outside channels 34 during this assembly operation. This can be done, for instance by positioning the cam arms 16 a few degrees counterclockwise from the transit position shown in solid line in
Fins 36 are shaped so that the fins are at least disposed in channels 34 in the transit position as shown in solid line in
While the cam lever retainer 32 has been illustrated as fins 36 of the cam lever 14 engaging in slots 34 of the connector body 12, the parts can be reversed. That is, the cam lever 14 can be shaped with retention slots while the connector body 12 is provided with the cooperating fins.
In other words, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those described above, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the following claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5252084 | Wakata | Oct 1993 | A |
5938458 | Krehbiel et al. | Aug 1999 | A |
6217354 | Fencl et al. | Apr 2001 | B1 |
6413105 | Noro et al. | Jul 2002 | B2 |
6565372 | Bakker et al. | May 2003 | B2 |
6705882 | Casses | Mar 2004 | B2 |
6739889 | Daggett et al. | May 2004 | B1 |
6767250 | Casses et al. | Jul 2004 | B2 |
6846191 | Hobbs et al. | Jan 2005 | B2 |