Electrical connector with cavity between terminals

Information

  • Patent Grant
  • 11444397
  • Patent Number
    11,444,397
  • Date Filed
    Friday, October 30, 2020
    4 years ago
  • Date Issued
    Tuesday, September 13, 2022
    2 years ago
Abstract
An electrical connector includes a housing, first and second sets of terminals and a spacer. The housing has a first sidewall, a second sidewall spaced apart from the first sidewall and a cavity between the first and second sidewalls. The first set of terminals is disposed in the cavity adjacent to the first sidewall. The second set of terminals is disposed in the cavity adjacent to the second sidewall. The spacer is disposed in the cavity between the first and second sets of terminals.
Description
FIELD OF THE INVENTION

The present invention relates to an electrical connector, and more particularly relates to an electrical board connector.


BACKGROUND

Electrical connectors are widely used in electrical systems for data communication, data storage, data transmission and the like. Board connectors have been used to establish electrical connections between printed circuit boards (PCBs) to which plug connector and counterpart receptacle connector are mounted respectively.


SUMMARY

According to an embodiment, an electrical connector includes a housing, first and second sets of terminals and a spacer. The housing has a first sidewall, a second sidewall spaced apart from the first sidewall and a cavity between the first and second sidewalls. The first set of terminals is disposed in the cavity adjacent to the first sidewall. The second set of terminals is disposed in the cavity adjacent to the second sidewall. The spacer is disposed in the cavity between the first and second sets of terminals.


Other aspects and advantages of the present invention will become apparent from the following detailed description, illustrating by way of example the inventive concept of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are disclosed hereinafter with reference to the drawings, in which:



FIG. 1 is a perspective view of an electrical connector in accordance with one embodiment of the present invention;



FIG. 2 is a perspective view of a counterpart connector for connecting to the board connector shown in FIG. 1;



FIG. 3 is a front view of FIG. 1;



FIG. 4 is a top view of FIG. 1;



FIG. 5 is an exploded perspective view of the electrical connector shown in FIG. 1;



FIG. 6 is a perspective top view showing the spacer of the electrical connector of FIG. 1;



FIG. 7 is a perspective bottom view showing the spacer of FIG. 6;



FIG. 8 is a perspective view showing the first set of terminals of the electrical connector of FIG. 1;



FIG. 9 is a perspective view the first set of terminals of FIG. 8 from another viewing angle;



FIG. 10 is a cross sectional perspective view of the electrical connector shown in FIG. 3 along A-A,



FIG. 11 cross sectional perspective view of the electrical connector shown in FIG. 3 along B-B;



FIG. 12 is a perspective view of showing the first and second sets of terminals of the electrical connector shown in FIG. 10;



FIG. 13 is a perspective view of showing the housing of the electrical connector shown in FIG. 10;



FIG. 14 is an enlarged view of portion 10A of FIG. 10;



FIG. 15 is an enlarged view of portion 11A of FIG. 11;



FIG. 16 is a cross sectional perspective view of the electrical connector shown in FIG. 3 along C-C.



FIG. 17A is a perspective view showing a fixing tab of electrical connector of FIG. 16;



FIG. 17B is an enlarged view of portion 16A of FIG. 16;



FIG. 18 is a cross sectional perspective view of the electrical connector shown in FIG. 3 along D-D,



FIG. 19 is an enlarged view of portion 18A of FIG. 18;



FIG. 20 is a cross sectional perspective view of the electrical connector shown in FIG. 4 along E-E;



FIG. 21 is a perspective view of an electrical connector in accordance with another embodiment of the present invention;



FIG. 22 is a front view of FIG. 21;



FIG. 23 is an exploded perspective view of the electrical connector shown in FIG. 21;



FIG. 24 is a cross sectional perspective view of the electrical connector shown in FIG. 22 along F-F;



FIG. 25 is a cross sectional perspective view of the electrical connector shown in FIG. 22 along G-G;



FIG. 26 is a cross sectional perspective view of the electrical connector shown in FIG. 22 along H-H;





DETAILED DESCRIPTION

As shown in FIGS. 1 to 5, an electrical connector 100 includes a housing 110, a first set of terminals 120, a second set of terminals 160 and a spacer 140. Housing 110 has a first sidewall 112 and a second sidewall 116 spaced apart from first sidewall 112, forming a cavity 114 between first and second sidewalls 112, 116. First set of terminals 120 is disposed in cavity 114 and adjacent to first sidewall 112. Second set of terminals 160 is disposed in cavity 114 and adjacent to second sidewall 116. Spacer 140 is disposed in cavity 114 between first set of terminals 120 and second set of terminals 160. Housing 110 defines a depth direction 102, a width direction 104 perpendicular to depth direction 102 and a height direction 106 perpendicular to depth direction 102 and width direction 104.


As shown in FIGS. 1, 3 and 4, first set of terminals 120 includes first signal pairs 123 and first ground terminals 122. Each of the first ground terminals 122 is disposed between adjacent first signal pairs 123. Second set of terminals 160 includes second signal pairs 165 and second ground terminals 166. Each of the second ground terminals 166 is disposed between adjacent second signal pairs 165. Housing 110 has windows 108 formed on first and second sidewalls 112, 116 (only windows 108 on first sidewall 112 are shown), corresponding to the positions of first and second signal pairs 123, 165. Spacer 140 is positioned closer to first and second ground terminals 122, 166 than to the first and second signal pairs 123, 165. Spacer 140 may be in contact with first and second ground terminals 122, 166 or alternatively, spacer 140 is spaced apart from the first and second ground terminals 122, 166 with an air gap. Windows 108 provide air space for first and second ground terminals 122, 166 which contributes to signal integrity performance of electrical connector 100.


Spacer 140 is electrically coupled to first and second ground terminals 122, 166 to serve as a resonant damping component to improve signal integrity of electrical connector 100.


First signal pairs 123 and first ground terminals 122 may be disposed in a first plane. Second signal pairs 165 and second ground terminals 166 may be disposed in a second plane. As shown in FIGS. 6 and 7. Spacer 140 has a base 141. At one side of base 141 there are formed first ridges 142 projecting from base 141 and facing first set of terminals 120. At an opposite side of base 141 there are formed second ridges 146 projecting from base 141 and facing second set of terminals 160. Between adjacent first ridges 142 there is formed a first notch 143. Between adjacent second ridges 146 there is formed a second notch 145. Each of the first ridges 142 is in alignment with one of the first ground terminals 122 with respect to width direction 104 of housing 110. Each of the second ridges 146 is in alignment with one of the second ground terminals 166 with respect to width direction 104 of housing 110. Each of the first ridges 142 is in contact with one of the first ground terminals 122, each of the second ridges 166 is in contact with the one of the second ground terminals 166. Alternatively, each of the first ridges 142 is spaced apart from one of the first ground terminals 122 with an air gap, and each one of the second ridges 146 is spaced apart from one of the second ground terminals 166 with an air gap.


In one embodiment, as shown with further details in FIGS. 6 to 20, electrical connector 100 includes a first frame 130 and a second frame 150. First frame 130 is molded to and supporting first set of terminals 120, to form a first Insert-Molded Leadframe Assembly (IMLA) 120a. Second frame 150 is molded to and supporting second set of terminals 160, to form a first Insert-Molded Leadframe Assembly (IMLA) 160a. First and second IMLAs 120a. 106a have symmetrical structures and dimensions, hence illustrations and references made in the context to one of the IMLAs applies to those made to the other one of the IMLAs, in conduction with FIGS. 8 and 9. First frame 130 is disposed between first sidewall 112 of housing 110 and spacer 140. Second frame 150 is disposed between second sidewall 116 of housing 110 and spacer 140.


As shown in FIGS. 8 and 9, first frame 130 has side columns 137 and first protuberances 133 facing spacer 140 and notches 132 between protuberances 133. Second frame 150 has second columns 153 and second protuberances 155 facing spacer 140, and notches 156 between protuberances 155. Each one of the first ridges 142 of spacer 140 is disposed in one of the first notches 132, each one of the second ridges 146 of spacer 140 is disposed in one of the second notches 156. Each one of the first and second protuberances 133, 155 is received between adjacent first and second ridges 143, 145 of spacer 140, respectively. First columns 137 and first protuberances 133 form a first recess 139 on first IMLA 120a, facing spacer 140. Likewise second columns 153 and second protuberances 155 form a second recess 151 on second IMLA 160a, facing spacer 140. The segment of first set of terminals 120 within first recess 139 are dented with respect to first columns 137 and first protuberances 133, and the segment of second set of terminals 160 within second recess 151 are dented with respect to second columns 153 and second protuberances 155. As such, there is formed an air gap between the first set of terminals 120 and spacer 140, and an air gap between the second set of terminals 160 and spacer 140. The air gaps serve to improve signal integrity performance between the signal contacts and spacer 140.


First frame 130 has first ribs 131 facing first sidewall 112 of housing 110. Second frame 150 has second ribs 157 facing second sidewall 116 of housing 110. First ribs 131 separate first set of terminals 120 from first sidewall 112 of housing 110. Second ribs 157 separate second set of terminals 160 from second sidewall 116 of housing 110.


Between first ribs 131 there are formed first openings 1302 through which first set of terminals 120 are partially exposed. Between second ribs 157 there are formed second openings 1508 through which second set of terminals 160 are partially exposed.


As shown in FIGS. 10 to 15, first set of terminals 120 is positioned with a distance 120d from first sidewall 112 of housing 110. Second set of terminals 160 is positioned with a distance 160d from second sidewall 116 of housing 110. First and second openings 1302, 1508 are formed for insert molding process of producing IMPAs 120a. 160a.



FIGS. 14 and 15 shows the positional relationship between spacer 140 and second ground terminals 166, and that between spacer 140 and second signal pairs 165. The positional relationship between spacer 140 and first ground terminals and first signal pairs is the same. As shown in FIGS. 14 and 15, a distance between second ridge 146 of spacer 140 and a second ground terminal 166 is denoted as distance 146d. A distance between second notch 145 and a second signal pair 165 is denoted as distance 145d, in which, distance 145d is greater than distance 146d. Another words, spacer 140 is positioned closer to first and second ground terminals 122, 166 of first and second set of terminals 120, 160 to effect electrical coupling between spacer 140 and first and second ground terminals 122, 166 and achieve signal integrity improvement.


As shown in FIGS. 16 and 17A and 17B, electrical connector 100 includes a pair of fixing tabs 180 secured to housing 110 and engaged to spacer 140. Each of the first and second frames 130, 150 has a pair of grooves 138, 158 into which each one of the fixing tabs 180 is fitted. Each fixing tab 180 has barbs 186 biting into sidewalls 112, 116 of housing 110 such that fixing tabs 180 are securely fixed to housing 110. Each fixing tab 180 has a main body 181 and first and second bosses 182, 186 raised from main body 181. Main body 181 is received into grooves 138, 158 with first and second bosses 182, 186 forced into respective first and second frames 130, 150 in the first and second grooves 138, 158. Each fixing tab 180 has a middle portion 184 engaged to spacer 140 to fix spacer 140 to housing 110.


As shown in FIGS. 18 to 20, connected to first and second sidewalls 112, 116 of housing 110 there is a partition 117 onto which spacer 140 is seated. Partition 117 has one or more recesses 118 formed thereon and accessible through cavity 114. Spacer 140 may include one or more pins 148 projecting downward from bottom surface thereof. Each pin 148 is received into a recess 118 such that movement of spacer 140 relative to housing 110 along depth direction 102 and width direction 104 is prevented.


In another embodiment, as shown in FIGS. 21 to 26, an electrical connector 200 includes a housing 210, first and second sets of terminals 220, 260, and a spacer 240. Housing 210 has a first sidewall 212 and a second sidewall 216 spaced apart from first sidewall 212, and a cavity 214 between first and second sidewalls 212, 216. First set of terminals 220 is disposed in cavity 214 adjacent to first sidewall 212, and second set of terminals 260 is disposed in cavity 214 adjacent to second sidewall 216. Spacer 240 is disposed in cavity 214 between first and second set of terminals 220, 260.


Electrical connector 200 is of a low-profile structure having a relatively smaller height dimension compared to that of the previous embodiment. First and second set of terminals 220, 260 are respectively attached to first and second sidewalls 212, 216 without additional support of a frame. First and second signal pairs 223, 265 are positioned in a relatively greater distance from spacer 240 and spacer 240 is electrically coupled to first and second ground terminals 222, 266 by being positioned closer to such ground terminals, via ridges 242, 246 projecting from spacer 240.


Similar to the previous embodiment, electrical connector 200 includes a pair of fixing tabs 280 fixed to housing 210 to secure spacer 240 to housing to ensure the correct positional relationship with first and second set of terminals 220, 260.


Although embodiments of the present invention have been illustrated in conjunction with the accompanying drawings and described in the foregoing detailed description, it should be appreciated that the present invention is not limited to the embodiments disclosed. Therefore, the present invention should be understood to be capable of numerous rearrangements, modifications, alternatives and substitutions without departing from the spirit of the invention as set forth and recited by the following claims.

Claims
  • 1. An electrical connector comprising: a housing having a first sidewall, a second sidewall spaced apart from the first sidewall, and a cavity between the first and second sidewalls;a first set of terminals disposed in the cavity adjacent to the first sidewall;a second set of terminals disposed in the cavity adjacent to the second sidewall and aligned with the first set of terminals in a direction separating the first sidewall from the second sidewall;a resonant damping component disposed in the cavity between the first and second sets of terminals, wherein the resonant damping component comprises: a base; andfirst ridges projecting from the base toward the first sidewall of the housing;a first member supporting the first set of terminals, the first member comprising: first protuberances facing the resonant damping component; anda first plurality of notches each disposed between adjacent ones of the first protuberances, and wherein the first ridges of the resonant damping component are disposed in the first plurality of notches.
  • 2. The electrical connector of claim 1, wherein each one of the first protuberances being received between adjacent first ridges of the resonant damping component.
  • 3. The electrical connector of claim 1, wherein: the first set of terminals comprises first ends exposed in the cavity and second ends spaced from the first ends in a first direction along the first sidewall, the second ends being configured for mounting to a surface of a printed circuit board (PCB) that is perpendicular to the first direction; andthe second set of terminals comprises first ends exposed in the cavity and second ends spaced from the first ends in the first direction along the second sidewall, the second ends being configured for mounting to the surface of the PCB.
  • 4. The electrical connector of claim 1, wherein the first set of terminals comprises first signal pairs and first ground terminals, each one of the first ground terminals being disposed between adjacent first signal pairs, wherein the resonant damping component being electrically coupled to the first ground terminals.
  • 5. The electrical connector of claim 4, wherein the resonant damping component is in contact with the first ground terminals.
  • 6. The electrical connector of claim 4, wherein the housing further comprises windows on the first sidewall, each of the first signal pairs includes two signal terminals, and each window being positioned in alignment with at least one of the two signal terminals to provide an air space thereto.
  • 7. The electrical connector of claim 4, wherein the resonant damping component is positioned closer to the first and second ground terminals than to the first and second signal pairs.
  • 8. The electrical connector of claim 7, wherein each one of the first ridges being in alignment with one of the first ground terminals with respect to a width direction of the housing.
  • 9. The electrical connector of claim 8, wherein each one of the first ridges is in contact with one of the first ground terminals.
  • 10. The electrical connector of claim 1, wherein the resonant damping component further comprises second ridges projecting from the base toward the second sidewall of the housing, wherein at least one of the first ridges is aligned with a respective at least one of the second ridges in the direction separating the first sidewall from the second sidewall.
  • 11. The electrical connector of claim 10, further comprising a second member supporting the second set of terminals, the second member comprising: second protuberances facing the resonant damping component, at least one of the second protuberances being aligned with at least one of the first protuberances in a direction separating the first member from the second member; anda second plurality of notches each disposed between adjacent ones of the second protuberances, wherein the second ridges of the resonant damping component are disposed in the second plurality of notches.
  • 12. An electrical connector, comprising: a housing having a first sidewall, a second sidewall spaced apart from the first sidewall, and a cavity between the first and second sidewalls, wherein the cavity extends through the housing from a first end, adjacent a first surface of the housing, to a second end, adjacent a second surface of the housing that is opposite the first surface;a first set of terminals disposed in the cavity adjacent to the first sidewall, the first set of terminals comprising mating contacts at the first end of the cavity and tails exposed at the second end of the cavity;a second set of terminals disposed in the cavity adjacent to the second sidewall, the second set of terminals comprising mating contacts at the first end of the cavity and tails exposed at the second end of the cavity;a resonant damping component disposed in the cavity adjacent the second end; anda first member supporting the first set of terminals and disposed in the cavity, at least a portion of the first member being disposed between the resonant damping component and the first sidewall,wherein the first member comprises a first plurality of notches aligned with ones of the first set of terminals and disposed between adjacent pairs of the first set of terminals.
  • 13. The electrical connector of claim 12, wherein: the tails of the first set of terminals are configured for mounting to a surface of a printed circuit board (PCB) that is parallel to the second surface of the housing; andthe tails of the second set of terminals are configured for mounting to the surface of the PCB.
  • 14. The electrical connector of claim 12, further comprising: a second member supporting the second set of terminals and disposed in the cavity, at least a portion of the second member being disposed between the resonant damping component and the second sidewall,wherein the second member comprises a second plurality of notches aligned with ones of the second set of terminals and disposed between adjacent pairs of the second set of terminals, and the first plurality of notches are aligned with the second plurality of notches.
  • 15. The electrical connector of claim 12, wherein the ones of the first set of terminals comprise ground terminals, and the adjacent pairs of the first set of terminals comprise signal pairs.
  • 16. The electrical connector of claim 15, wherein the resonant damping component comprises first ridges disposed in the first plurality of notches, respectively, and the first and second pluralities of ridges are electrically coupled to the ground terminals.
  • 17. The electrical connector of claim 16, wherein the first plurality of ridges is in contact with the ground terminals.
  • 18. An electrical connector, comprising: a housing having a first sidewall, a second sidewall spaced apart from the first sidewall, and a cavity between the first and second sidewalls;a first set of terminals disposed in the cavity adjacent to the first sidewall, the first set of terminals comprising: a first plurality of contact tails configured for mounting to a surface of a printed circuit board (PCB); anda first plurality of mating ends spaced from the first plurality of contact tails in a direction perpendicular to the surface;a second set of terminals disposed in the cavity adjacent to the second sidewall, the second set of terminals comprising: a second plurality of contact tails configured for mounting to the surface of the PCB; anda second plurality of mating ends spaced from the second plurality of contact tails in the direction perpendicular to the surface;a resonant damping component disposed in the cavity; anda first member supporting the first set of terminals and disposed in the cavity, at least a portion of the first member being disposed between the resonant damping component and the first sidewall,wherein the first member comprises a first plurality of notches aligned with ones of the first set of terminals and disposed between adjacent pairs of the first set of terminals.
  • 19. The electrical connector of claim 18, wherein the first set of terminals is aligned with the second set of terminals in a direction separating the first sidewall from the second sidewall.
  • 20. The electrical connector of claim 18, further comprising: a second member supporting the second set of terminals and disposed in the cavity, at least a portion of the second member being disposed between the resonant damping component and the second sidewall,wherein the second member comprises a second plurality of notches aligned with ones of the second set of terminals and disposed between adjacent pairs of the second set of terminals, and the first plurality of notches are aligned with the second plurality of notches.
  • 21. The electrical connector of claim 18, wherein the ones of the first set of terminals comprise ground terminals, and the adjacent pairs of the first set of terminals comprise signal pairs.
  • 22. The electrical connector of claim 21, wherein the resonant damping component comprises a first plurality of ridges disposed in the first plurality of notches, and the first plurality of ridges is electrically coupled to the ground terminals.
  • 23. The electrical connector of claim 22, wherein the first plurality of ridges is in contact with the ground terminals.
Priority Claims (1)
Number Date Country Kind
10201505358W Jul 2015 SG national
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/745,995, filed Jan. 17, 2020, now U.S. Pat. No. 10,840,622, issued Nov. 17, 2020, entitled “ELECTRICAL CONNECTOR WITH CAVITY BETWEEN TERMINALS,” which is a continuation of U.S. application Ser. No. 15/742,244, filed Jan. 5, 2018, now U.S. Pat. No. 10,541,482, issued Jan. 21, 2020, entitled “ELECTRICAL CONNECTOR WITH CAVITY BETWEEN TERMINALS,” which is a 35 U.S.C. § 371 National Phase filing of International Application No. PCT/SG2016/050317, filed on Jul. 7, 2016, entitled “ELECTRICAL CONNECTOR,” which claims the benefit of and priority to Singapore Patent Application Serial No. 10201505358 W, filed on Jul. 7, 2015, entitled “ELECTRICAL CONNECTOR.” The entire contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (703)
Number Name Date Kind
2996710 Pratt Aug 1961 A
3002162 Garstang Sep 1961 A
3134950 Cook May 1964 A
3243756 Ruete et al. Mar 1966 A
3322885 May et al. May 1967 A
3390369 Zavertnik et al. Jun 1968 A
3390389 Bluish Jun 1968 A
3505619 Bishop Apr 1970 A
3573677 Detar Apr 1971 A
3731259 Occhipinti May 1973 A
3743978 Fritz Jul 1973 A
3745509 Woodward et al. Jul 1973 A
3786372 Epis et al. Jan 1974 A
3825874 Peverill Jul 1974 A
3848073 Simons et al. Nov 1974 A
3863181 Glance et al. Jan 1975 A
3999830 Herrmann, Jr. et al. Dec 1976 A
4155613 Brandeau May 1979 A
4175821 Hunter Nov 1979 A
4195272 Boutros Mar 1980 A
4215910 Walter Aug 1980 A
4272148 Knack, Jr. Jun 1981 A
4276523 Boutros et al. Jun 1981 A
4371742 Manly Feb 1983 A
4408255 Adkins Oct 1983 A
4447105 Ruehl May 1984 A
4457576 Cosmos et al. Jul 1984 A
4471015 Ebneth et al. Sep 1984 A
4472765 Hughes Sep 1984 A
4484159 Whitley Nov 1984 A
4490283 Kleiner Dec 1984 A
4518651 Wolfe, Jr. May 1985 A
4519664 Tillotson May 1985 A
4519665 Althouse et al. May 1985 A
4571014 Robin et al. Feb 1986 A
4605914 Harman Aug 1986 A
4607907 Bogursky Aug 1986 A
4632476 Schell Dec 1986 A
4636752 Saito Jan 1987 A
4655518 Johnson et al. Apr 1987 A
4674812 Thom et al. Jun 1987 A
4678260 Gallusser et al. Jul 1987 A
4682129 Bakermans et al. Jul 1987 A
4686607 Johnson Aug 1987 A
4687267 Header Aug 1987 A
4728762 Roth et al. Mar 1988 A
4737598 O'Connor Apr 1988 A
4751479 Parr Jun 1988 A
4761147 Gauthier Aug 1988 A
4787548 Abbagnaro et al. Nov 1988 A
4806107 Arnold et al. Feb 1989 A
4824383 Lemke Apr 1989 A
4836791 Grabbe et al. Jun 1989 A
4846724 Sasaki et al. Jul 1989 A
4846727 Glover et al. Jul 1989 A
4871316 Herrell et al. Oct 1989 A
4876630 Dara Oct 1989 A
4878155 Conley Oct 1989 A
4889500 Lazar et al. Dec 1989 A
4902243 Davis Feb 1990 A
4948922 Varadan et al. Aug 1990 A
4970354 Iwasa et al. Nov 1990 A
4971726 Maeno et al. Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4984992 Beamenderfer et al. Jan 1991 A
4992060 Meyer Feb 1991 A
5000700 Masubuchi et al. Mar 1991 A
5046084 Barrett et al. Sep 1991 A
5046952 Cohen et al. Sep 1991 A
5046960 Fedder Sep 1991 A
5066236 Broeksteeg Nov 1991 A
5135405 Fusselman et al. Aug 1992 A
5141454 Garrett et al. Aug 1992 A
5150086 Ito Sep 1992 A
5166527 Solymar Nov 1992 A
5168252 Naito Dec 1992 A
5168432 Murphy et al. Dec 1992 A
5171161 Kachlic Dec 1992 A
5176538 Hansell, III et al. Jan 1993 A
5190472 Voltz et al. Mar 1993 A
5246388 Collins et al. Sep 1993 A
5259773 Champion et al. Nov 1993 A
5266055 Naito et al. Nov 1993 A
5280257 Cravens et al. Jan 1994 A
5281762 Long et al. Jan 1994 A
5287076 Johnescu et al. Feb 1994 A
5323299 Weber Jun 1994 A
5334050 Andrews Aug 1994 A
5335146 Stucke Aug 1994 A
5340334 Nguyen Aug 1994 A
5346410 Moore, Jr. Sep 1994 A
5352123 Sample et al. Oct 1994 A
5403206 McNamara et al. Apr 1995 A
5407622 Cleveland et al. Apr 1995 A
5429520 Morlion et al. Jul 1995 A
5429521 Morlion et al. Jul 1995 A
5433617 Morlion et al. Jul 1995 A
5433618 Morlion et al. Jul 1995 A
5456619 Belopolsky et al. Oct 1995 A
5461392 Mott et al. Oct 1995 A
5474472 Niwa et al. Dec 1995 A
5484310 McNamara et al. Jan 1996 A
5490372 Schlueter Feb 1996 A
5496183 Soes et al. Mar 1996 A
5499935 Powell Mar 1996 A
5539148 Konishi et al. Jul 1996 A
5551893 Johnson Sep 1996 A
5554050 Marpoe, Jr. Sep 1996 A
5562497 Yagi et al. Oct 1996 A
5564949 Wellinsky Oct 1996 A
5571991 Highum et al. Nov 1996 A
5597328 Mouissie Jan 1997 A
5605469 Wellinsky et al. Feb 1997 A
5620340 Andrews Apr 1997 A
5651702 Hanning et al. Jul 1997 A
5660551 Sakurai Aug 1997 A
5669789 Law Sep 1997 A
5702258 Provencher et al. Dec 1997 A
5755597 Panis et al. May 1998 A
5795191 Preputnick et al. Aug 1998 A
5796323 Uchikoba et al. Aug 1998 A
5803768 Zell et al. Sep 1998 A
5831491 Buer et al. Nov 1998 A
5833486 Shinozaki Nov 1998 A
5833496 Hollander et al. Nov 1998 A
5842887 Andrews Dec 1998 A
5870528 Fukuda Feb 1999 A
5885088 Brennan et al. Mar 1999 A
5885095 Cohen et al. Mar 1999 A
5887158 Sample et al. Mar 1999 A
5904594 Longueville et al. May 1999 A
5924899 Paagman Jul 1999 A
5931686 Sasaki et al. Aug 1999 A
5959591 Aurand Sep 1999 A
5961355 Morlion et al. Oct 1999 A
5971809 Ho Oct 1999 A
5980321 Cohen et al. Nov 1999 A
5981869 Kroger Nov 1999 A
5982253 Perrin et al. Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
5997361 Driscoll et al. Dec 1999 A
6019616 Yagi Feb 2000 A
6042394 Mitra et al. Mar 2000 A
6083047 Paagman Jul 2000 A
6102747 Paagman Aug 2000 A
6116926 Ortega et al. Sep 2000 A
6120306 Evans Sep 2000 A
6123554 Ortega et al. Sep 2000 A
6132255 Verhoeven Oct 2000 A
6132355 Derie Oct 2000 A
6135824 Okabe et al. Oct 2000 A
6146202 Ramey et al. Nov 2000 A
6152274 Blard et al. Nov 2000 A
6152742 Cohen et al. Nov 2000 A
6152747 McNamara Nov 2000 A
6163464 Ishibashi et al. Dec 2000 A
6168469 Lu Jan 2001 B1
6171115 Mickievicz et al. Jan 2001 B1
6171149 van Zanten Jan 2001 B1
6174202 Mitra Jan 2001 B1
6174203 Asao Jan 2001 B1
6174944 Chiba et al. Jan 2001 B1
6179651 Huang Jan 2001 B1
6179663 Bradley et al. Jan 2001 B1
6196853 Harting et al. Mar 2001 B1
6203396 Asmussen et al. Mar 2001 B1
6206729 Bradley et al. Mar 2001 B1
6210182 Elco et al. Apr 2001 B1
6210227 Yamasaki et al. Apr 2001 B1
6217372 Reed Apr 2001 B1
6227875 Wu et al. May 2001 B1
6231391 Ramey et al. May 2001 B1
6238245 Stokoe et al. May 2001 B1
6267604 Mickievicz et al. Jul 2001 B1
6273758 Lloyd et al. Aug 2001 B1
6293827 Stokoe Sep 2001 B1
6296496 Trammel Oct 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299483 Cohen et al. Oct 2001 B1
6299484 Van Woensel Oct 2001 B2
6299492 Pierini et al. Oct 2001 B1
6322395 Nishio et al. Nov 2001 B1
6328572 Higashida et al. Dec 2001 B1
6328601 Yip et al. Dec 2001 B1
6333468 Endoh et al. Dec 2001 B1
6343955 Billman et al. Feb 2002 B2
6343957 Kuo et al. Feb 2002 B1
6347962 Kline Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6358088 Nishio et al. Mar 2002 B1
6358092 Siemon et al. Mar 2002 B1
6361363 Hwang Mar 2002 B1
6364711 Berg et al. Apr 2002 B1
6364713 Kuo Apr 2002 B1
6375510 Asao Apr 2002 B2
6379188 Cohen et al. Apr 2002 B1
6380485 Beaman et al. Apr 2002 B1
6392142 Uzuka et al. May 2002 B1
6394839 Reed May 2002 B2
6394842 Sakurai et al. May 2002 B1
6396712 Kuijk May 2002 B1
6398588 Bickford Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6428344 Reed Aug 2002 B1
6431914 Billman Aug 2002 B1
6435913 Billman Aug 2002 B1
6435914 Billman Aug 2002 B1
6441313 Novak Aug 2002 B1
6447170 Takahashi et al. Sep 2002 B1
6454605 Bassler et al. Sep 2002 B1
6461202 Kline Oct 2002 B2
6471549 Lappohn Oct 2002 B1
6478624 Ramey et al. Nov 2002 B2
6482017 Van Doorn Nov 2002 B1
6491545 Spiegel et al. Dec 2002 B1
6503103 Cohen et al. Jan 2003 B1
6506076 Cohen et al. Jan 2003 B2
6517360 Cohen Feb 2003 B1
6520803 Dunn Feb 2003 B1
6527587 Ortega et al. Mar 2003 B1
6528737 Kwong et al. Mar 2003 B1
6530790 McNamara et al. Mar 2003 B1
6533613 Turner et al. Mar 2003 B1
6537087 McNamara et al. Mar 2003 B2
6538524 Miller Mar 2003 B1
6538899 Krishnamurthi et al. Mar 2003 B1
6540522 Sipe Apr 2003 B2
6540558 Paagman Apr 2003 B1
6540559 Kemmick et al. Apr 2003 B1
6541712 Gately et al. Apr 2003 B1
6544072 Olson Apr 2003 B2
6544647 Hayashi et al. Apr 2003 B1
6551140 Billman et al. Apr 2003 B2
6554647 Cohen et al. Apr 2003 B1
6565387 Cohen May 2003 B2
6565390 Wu May 2003 B2
6579116 Brennan et al. Jun 2003 B2
6582244 Fogg et al. Jun 2003 B2
6585540 Gutierrez et al. Jul 2003 B2
6592381 Cohen et al. Jul 2003 B2
6595801 Leonard et al. Jul 2003 B1
6595802 Watanabe et al. Jul 2003 B1
6602095 Astbury, Jr. et al. Aug 2003 B2
6607402 Cohen et al. Aug 2003 B2
6608762 Patriche Aug 2003 B2
6609922 Torii Aug 2003 B2
6609933 Yamasaki Aug 2003 B2
6612871 Givens Sep 2003 B1
6616482 De La Cruz et al. Sep 2003 B2
6616864 Jiang et al. Sep 2003 B1
6621373 Mullen et al. Sep 2003 B1
6652318 Winings et al. Nov 2003 B1
6652319 Billman Nov 2003 B1
6655966 Rothermel et al. Dec 2003 B2
6663427 Billman et al. Dec 2003 B1
6663429 Korsunsky et al. Dec 2003 B1
6692272 Lemke et al. Feb 2004 B2
6705895 Hasircoglu Mar 2004 B2
6706974 Chen et al. Mar 2004 B2
6709294 Cohen et al. Mar 2004 B1
6712648 Padro et al. Mar 2004 B2
6713672 Stickney Mar 2004 B1
6717825 Volstorf Apr 2004 B2
6722897 Wu Apr 2004 B1
6726492 Yu Apr 2004 B1
6741141 Kormanyos May 2004 B2
6743057 Davis et al. Jun 2004 B2
6749444 Murr et al. Jun 2004 B2
6762941 Roth Jul 2004 B2
6764341 Lappoehn Jul 2004 B2
6776645 Roth et al. Aug 2004 B2
6776659 Stokoe et al. Aug 2004 B1
6786771 Gailus Sep 2004 B2
6792941 Andersson Sep 2004 B2
6806109 Furuya et al. Oct 2004 B2
6808419 Korsunsky et al. Oct 2004 B1
6808420 Whiteman, Jr. et al. Oct 2004 B2
6814519 Policicchio et al. Nov 2004 B2
6814619 Stokoe et al. Nov 2004 B1
6816486 Rogers Nov 2004 B1
6817870 Kwong et al. Nov 2004 B1
6823587 Reed Nov 2004 B2
6830478 Ko et al. Dec 2004 B1
6830483 Wu Dec 2004 B1
6830489 Aoyama Dec 2004 B2
6857899 Reed et al. Feb 2005 B2
6872085 Cohen et al. Mar 2005 B1
6875031 Korsunsky et al. Apr 2005 B1
6899566 Kline et al. May 2005 B2
6903939 Chea, Jr. et al. Jun 2005 B1
6913490 Whiteman, Jr. et al. Jul 2005 B2
6932649 Rothermel et al. Aug 2005 B1
6957967 Petersen et al. Oct 2005 B2
6960103 Tokunaga Nov 2005 B2
6971916 Tokunaga Dec 2005 B2
6979202 Benham et al. Dec 2005 B2
6979226 Otsu et al. Dec 2005 B2
6982378 Dickson Jan 2006 B2
7004793 Scherer et al. Feb 2006 B2
7021969 Matsunaga Apr 2006 B2
7044794 Consoli et al. May 2006 B2
7057570 Irion, II et al. Jun 2006 B2
7074086 Cohen et al. Jul 2006 B2
7086872 Myer et al. Aug 2006 B2
7094102 Cohen et al. Aug 2006 B2
7104842 Huang et al. Sep 2006 B1
7108556 Cohen et al. Sep 2006 B2
7120327 Bozso et al. Oct 2006 B2
7137849 Nagata Nov 2006 B2
7156672 Fromm et al. Jan 2007 B2
7163421 Cohen et al. Jan 2007 B1
7182643 Winings et al. Feb 2007 B2
7229318 Winings et al. Jun 2007 B2
7232344 Gillespie et al. Jun 2007 B1
7261591 Korsunsky et al. Aug 2007 B2
7270573 Houtz Sep 2007 B2
7285018 Kenny et al. Oct 2007 B2
7303427 Swain Dec 2007 B2
7309239 Shuey et al. Dec 2007 B2
7316585 Smith et al. Jan 2008 B2
7318740 Henry et al. Jan 2008 B1
7320614 Toda et al. Jan 2008 B2
7322845 Regnier et al. Jan 2008 B2
7322855 Mongold et al. Jan 2008 B2
7331822 Chen n Feb 2008 B2
7331830 Minich Feb 2008 B2
7335063 Cohen et al. Feb 2008 B2
7347721 Kameyama Mar 2008 B2
7351114 Benham et al. Apr 2008 B2
7354274 Minich Apr 2008 B2
7364464 Iino et al. Apr 2008 B2
7365269 Donazzi et al. Apr 2008 B2
7371117 Gailus May 2008 B2
7390218 Smith et al. Jun 2008 B2
7390220 Wu Jun 2008 B1
7407413 Minich Aug 2008 B2
7467977 Yi et al. Dec 2008 B1
7473124 Briant et al. Jan 2009 B1
7494383 Cohen et al. Feb 2009 B2
7540781 Kenny et al. Jun 2009 B2
7554096 Ward et al. Jun 2009 B2
7581990 Kirk et al. Sep 2009 B2
7585186 McAlonis et al. Sep 2009 B2
7588464 Kim Sep 2009 B2
7588467 Chang Sep 2009 B2
7594826 Kobayashi et al. Sep 2009 B2
7604490 Chen et al. Oct 2009 B2
7604502 Pan Oct 2009 B2
7645165 Wu et al. Jan 2010 B2
7674133 Fogg et al. Mar 2010 B2
7690946 Knaub et al. Apr 2010 B2
7699644 Szczesny et al. Apr 2010 B2
7699663 Little et al. Apr 2010 B1
7722401 Kirk et al. May 2010 B2
7727027 Chiang et al. Jun 2010 B2
7727028 Zhang et al. Jun 2010 B1
7731537 Amleshi et al. Jun 2010 B2
7753731 Cohen et al. Jul 2010 B2
7758357 Pan et al. Jul 2010 B2
7771233 Gailus Aug 2010 B2
7789676 Morgan et al. Sep 2010 B2
7794240 Cohen et al. Sep 2010 B2
7794278 Cohen et al. Sep 2010 B2
7806729 Nguyen et al. Oct 2010 B2
7824192 Lin et al. Nov 2010 B2
7828595 Mathews Nov 2010 B2
7871296 Fowler et al. Jan 2011 B2
7874873 Do et al. Jan 2011 B2
7883369 Sun et al. Feb 2011 B1
7887371 Kenny et al. Feb 2011 B2
7887379 Kirk Feb 2011 B2
7906730 Atkinson et al. Mar 2011 B2
7914304 Cartier et al. Mar 2011 B2
7927143 Heister et al. Apr 2011 B2
7985097 Gulla Jul 2011 B2
8018733 Jia Sep 2011 B2
8057267 Johnescu Nov 2011 B2
8083553 Manter et al. Dec 2011 B2
8123544 Kobayashi Feb 2012 B2
8182289 Stokoe et al. May 2012 B2
8215968 Cartier et al. Jul 2012 B2
8216001 Kirk Jul 2012 B2
8251745 Johnescu Aug 2012 B2
8262411 Kondo Sep 2012 B2
8267721 Minich Sep 2012 B2
8272877 Stokoe et al. Sep 2012 B2
8337247 Zhu Dec 2012 B2
8348701 Lan et al. Jan 2013 B1
8371875 Gailus Feb 2013 B2
8382524 Khilchenko et al. Feb 2013 B2
8440637 Elmen May 2013 B2
8480432 Wu Jul 2013 B2
8506319 Ritter et al. Aug 2013 B2
8506331 Wu Aug 2013 B2
8545253 Amidon et al. Oct 2013 B2
8550861 Cohen et al. Oct 2013 B2
8597051 Yang et al. Dec 2013 B2
8657627 McNamara et al. Feb 2014 B2
8678860 Minich et al. Mar 2014 B2
8715003 Buck et al. May 2014 B2
8715005 Pan May 2014 B2
8740637 Wang et al. Jun 2014 B2
8764492 Chiang Jul 2014 B2
8771016 Atkinson et al. Jul 2014 B2
8864506 Little et al. Oct 2014 B2
8864521 Atkinson et al. Oct 2014 B2
8905777 Zhu et al. Dec 2014 B2
8926377 Kirk et al. Jan 2015 B2
8944831 Stoner et al. Feb 2015 B2
8968034 Hsu Mar 2015 B2
8998642 Manter et al. Apr 2015 B2
9004942 Paniagua Apr 2015 B2
9011177 Lloyd et al. Apr 2015 B2
9022806 Cartier, Jr. et al. May 2015 B2
9028201 Kirk et al. May 2015 B2
9028281 Kirk et al. May 2015 B2
9065230 Milbrand, Jr. Jun 2015 B2
9083130 Casher et al. Jul 2015 B2
9124009 Atkinson et al. Sep 2015 B2
9219335 Atkinson et al. Dec 2015 B2
9225085 Cartier, Jr. et al. Dec 2015 B2
9257794 Wanha et al. Feb 2016 B2
9263835 Guo Feb 2016 B2
9281590 Liu et al. Mar 2016 B1
9287668 Chen et al. Mar 2016 B2
9300074 Gailus Mar 2016 B2
9337585 Yang May 2016 B1
9350095 Arichika et al. May 2016 B2
9450344 Cartier, Jr. et al. Sep 2016 B2
9461378 Chen Oct 2016 B1
9484674 Cartier, Jr. et al. Nov 2016 B2
9509101 Cartier, Jr. et al. Nov 2016 B2
9520686 Hu et al. Dec 2016 B2
9520689 Cartier, Jr. et al. Dec 2016 B2
9537250 Kao et al. Jan 2017 B2
9640915 Phillips et al. May 2017 B2
9692183 Phillips et al. Jun 2017 B2
9705255 Atkinson et al. Jul 2017 B2
9742132 Hsueh Aug 2017 B1
9748698 Morgan et al. Aug 2017 B1
9831588 Cohen Nov 2017 B2
9843135 Guetig et al. Dec 2017 B2
9899774 Gailus Feb 2018 B2
9972945 Huang et al. May 2018 B1
9997871 Zhong et al. Jun 2018 B2
10122129 Milbrand, Jr. et al. Nov 2018 B2
10135197 Little et al. Nov 2018 B2
10186814 Khilchenko et al. Jan 2019 B2
10211577 Milbrand, Jr. et al. Feb 2019 B2
10243304 Kirk et al. Mar 2019 B2
10270191 Li et al. Apr 2019 B1
10276995 Little Apr 2019 B2
10283910 Chen et al. May 2019 B1
10348040 Cartier, Jr. et al. Jul 2019 B2
10381767 Milbrand, Jr. et al. Aug 2019 B1
10431936 Horning et al. Oct 2019 B2
10511128 Kirk et al. Dec 2019 B2
10541482 Sasame Jan 2020 B2
10601181 Lu et al. Mar 2020 B2
10777921 Lu et al. Sep 2020 B2
10797417 Scholeno et al. Oct 2020 B2
10797446 Liu et al. Oct 2020 B2
10840622 Sasame Nov 2020 B2
10916894 Kirk et al. Feb 2021 B2
10931050 Cohen Feb 2021 B2
10965064 Hsu et al. Mar 2021 B2
11146025 Lu et al. Oct 2021 B2
11189971 Lu Nov 2021 B2
20010012730 Ramey et al. Aug 2001 A1
20010041477 Billman et al. Nov 2001 A1
20010042632 Manov et al. Nov 2001 A1
20010046810 Cohen et al. Nov 2001 A1
20020042223 Belopolsky et al. Apr 2002 A1
20020061671 Torii May 2002 A1
20020086582 Nitta et al. Jul 2002 A1
20020089464 Joshi Jul 2002 A1
20020098738 Astbury et al. Jul 2002 A1
20020102885 Kline Aug 2002 A1
20020111068 Cohen et al. Aug 2002 A1
20020111069 Astbury et al. Aug 2002 A1
20020115335 Saito Aug 2002 A1
20020123266 Ramey et al. Sep 2002 A1
20020132518 Kobayashi Sep 2002 A1
20020136506 Asada et al. Sep 2002 A1
20020146926 Fogg et al. Oct 2002 A1
20020168898 Billman et al. Nov 2002 A1
20020172469 Benner et al. Nov 2002 A1
20020181215 Guenthner Dec 2002 A1
20020192988 Droesbeke et al. Dec 2002 A1
20030003803 Billman et al. Jan 2003 A1
20030008561 Lappoehn Jan 2003 A1
20030008562 Yamasaki Jan 2003 A1
20030022555 Vicich et al. Jan 2003 A1
20030027439 Johnescu et al. Feb 2003 A1
20030109174 Korsunsky et al. Jun 2003 A1
20030119360 Jiang et al. Jun 2003 A1
20030143894 Kline et al. Jul 2003 A1
20030147227 Egitto et al. Aug 2003 A1
20030220018 Winings et al. Nov 2003 A1
20030220021 Whiteman et al. Nov 2003 A1
20040001299 van Haaster et al. Jan 2004 A1
20040005815 Mizumura et al. Jan 2004 A1
20040020674 McFadden et al. Feb 2004 A1
20040043661 Okada et al. Mar 2004 A1
20040058572 Fromm et al. Mar 2004 A1
20040072473 Wu Apr 2004 A1
20040097112 Minich et al. May 2004 A1
20040115968 Cohen Jun 2004 A1
20040121652 Gailus Jun 2004 A1
20040171305 McGowan et al. Sep 2004 A1
20040196112 Welbon et al. Oct 2004 A1
20040224559 Nelson et al. Nov 2004 A1
20040235352 Takemasa Nov 2004 A1
20040259419 Payne et al. Dec 2004 A1
20050006119 Cunningham et al. Jan 2005 A1
20050020135 Whiteman et al. Jan 2005 A1
20050039331 Smith Feb 2005 A1
20050048818 Pan Mar 2005 A1
20050048838 Korsunsky et al. Mar 2005 A1
20050048842 Benham et al. Mar 2005 A1
20050070160 Cohen et al. Mar 2005 A1
20050090299 Tsao et al. Apr 2005 A1
20050133245 Katsuyama et al. Jun 2005 A1
20050148239 Hull et al. Jul 2005 A1
20050176300 Hsu et al. Aug 2005 A1
20050176835 Kobayashi et al. Aug 2005 A1
20050215121 Tokunaga Sep 2005 A1
20050233610 Tutt et al. Oct 2005 A1
20050277315 Mongold et al. Dec 2005 A1
20050283974 Richard et al. Dec 2005 A1
20050287869 Kenny et al. Dec 2005 A1
20060009080 Regnier et al. Jan 2006 A1
20060019517 Raistrick et al. Jan 2006 A1
20060019525 Lloyd et al. Jan 2006 A1
20060019538 Davis et al. Jan 2006 A1
20060024983 Cohen et al. Feb 2006 A1
20060024984 Cohen et al. Feb 2006 A1
20060068640 Gailus Mar 2006 A1
20060073709 Reid Apr 2006 A1
20060104010 Donazzi et al. May 2006 A1
20060141866 Shiu Jun 2006 A1
20060166551 Korsunsky et al. Jul 2006 A1
20060216969 Bright et al. Sep 2006 A1
20060255876 Kushta et al. Nov 2006 A1
20060292932 Benham et al. Dec 2006 A1
20070004282 Cohen et al. Jan 2007 A1
20070004828 Khabbaz Jan 2007 A1
20070021000 Laurx Jan 2007 A1
20070021001 Laurx et al. Jan 2007 A1
20070021002 Laurx et al. Jan 2007 A1
20070021003 Laurx et al. Jan 2007 A1
20070021004 Laurx et al. Jan 2007 A1
20070037419 Sparrowhawk Feb 2007 A1
20070042639 Manter et al. Feb 2007 A1
20070054554 Do et al. Mar 2007 A1
20070059961 Cartier et al. Mar 2007 A1
20070111597 Kondou et al. May 2007 A1
20070141872 Szczesny et al. Jun 2007 A1
20070155241 Lappohn Jul 2007 A1
20070197063 Ngo et al. Aug 2007 A1
20070218765 Cohen et al. Sep 2007 A1
20070243764 Liu et al. Oct 2007 A1
20070275583 McNutt et al. Nov 2007 A1
20070293084 Ngo Dec 2007 A1
20080020640 Zhang et al. Jan 2008 A1
20080050968 Chang Feb 2008 A1
20080194146 Gailus Aug 2008 A1
20080246555 Kirk et al. Oct 2008 A1
20080248658 Cohen et al. Oct 2008 A1
20080248659 Cohen et al. Oct 2008 A1
20080248660 Kirk et al. Oct 2008 A1
20080318455 Beaman et al. Dec 2008 A1
20090011641 Cohen et al. Jan 2009 A1
20090011643 Amleshi et al. Jan 2009 A1
20090011645 Laurx et al. Jan 2009 A1
20090035955 McNamara Feb 2009 A1
20090061661 Shuey et al. Mar 2009 A1
20090117386 Vacanti et al. May 2009 A1
20090149045 Chen et al. Jun 2009 A1
20090203259 Nguyen et al. Aug 2009 A1
20090239395 Cohen et al. Sep 2009 A1
20090258516 Hiew et al. Oct 2009 A1
20090291593 Atkinson et al. Nov 2009 A1
20090305530 Ito et al. Dec 2009 A1
20090305533 Feldman et al. Dec 2009 A1
20090305553 Thomas et al. Dec 2009 A1
20100048058 Morgan et al. Feb 2010 A1
20100068934 Li et al. Mar 2010 A1
20100081302 Atkinson et al. Apr 2010 A1
20100099299 Moriyama et al. Apr 2010 A1
20100112846 Kotaka May 2010 A1
20100124851 Xiong et al. May 2010 A1
20100144167 Fedder et al. Jun 2010 A1
20100203772 Mao et al. Aug 2010 A1
20100273359 Walker et al. Oct 2010 A1
20100291806 Minich et al. Nov 2010 A1
20100294530 Atkinson et al. Nov 2010 A1
20110003509 Gailus Jan 2011 A1
20110067237 Cohen et al. Mar 2011 A1
20110104948 Girard, Jr. et al. May 2011 A1
20110130038 Cohen et al. Jun 2011 A1
20110143605 Pepe Jun 2011 A1
20110212649 Stokoe et al. Sep 2011 A1
20110212650 Amleshi et al. Sep 2011 A1
20110230095 Atkinson et al. Sep 2011 A1
20110230096 Atkinson et al. Sep 2011 A1
20110256739 Toshiyuki et al. Oct 2011 A1
20110287663 Gailus et al. Nov 2011 A1
20120077380 Minich et al. Mar 2012 A1
20120094536 Khilchenko et al. Apr 2012 A1
20120156929 Manter et al. Jun 2012 A1
20120184145 Zeng Jul 2012 A1
20120184154 Frank et al. Jul 2012 A1
20120202363 McNamara et al. Aug 2012 A1
20120202386 McNamara et al. Aug 2012 A1
20120214343 Buck et al. Aug 2012 A1
20120214344 Cohen et al. Aug 2012 A1
20130012038 Kirk et al. Jan 2013 A1
20130017733 Kirk et al. Jan 2013 A1
20130065454 Milbrand Jr. Mar 2013 A1
20130078870 Milbrand, Jr. Mar 2013 A1
20130078871 Milbrand, Jr. Mar 2013 A1
20130090001 Kagotani Apr 2013 A1
20130109232 Paniaqua May 2013 A1
20130143442 Cohen et al. Jun 2013 A1
20130196553 Gailus Aug 2013 A1
20130217263 Pan Aug 2013 A1
20130225006 Khilchenko et al. Aug 2013 A1
20130237100 Affeltranger Sep 2013 A1
20130273781 Buck et al. Oct 2013 A1
20130288513 Masubuchi et al. Oct 2013 A1
20130316590 Hon Nov 2013 A1
20140004724 Cartier, Jr. et al. Jan 2014 A1
20140004726 Cartier, Jr. et al. Jan 2014 A1
20140004746 Cartier, Jr. et al. Jan 2014 A1
20140024263 Dong et al. Jan 2014 A1
20140057498 Cohen Feb 2014 A1
20140113487 Chen et al. Apr 2014 A1
20140273557 Cartier, Jr. et al. Sep 2014 A1
20140273627 Cartier, Jr. et al. Sep 2014 A1
20140377992 Chang et al. Dec 2014 A1
20150056856 Atkinson et al. Feb 2015 A1
20150072546 Li Mar 2015 A1
20150111401 Guo Apr 2015 A1
20150111427 Foxconn Apr 2015 A1
20150126068 Fang May 2015 A1
20150140866 Tsai et al. May 2015 A1
20150214673 Gao et al. Jul 2015 A1
20150236451 Cartier, Jr. et al. Aug 2015 A1
20150236452 Cartier, Jr. et al. Aug 2015 A1
20150255904 Ito Sep 2015 A1
20150255926 Paniagua Sep 2015 A1
20150340798 Kao et al. Nov 2015 A1
20150380868 Chen et al. Dec 2015 A1
20160000616 Lavoie Jan 2016 A1
20160149343 Atkinson et al. May 2016 A1
20160156133 Masubuchi et al. Jun 2016 A1
20160172794 Sparrowhawk et al. Jun 2016 A1
20160211618 Gailus Jul 2016 A1
20160268744 Little et al. Sep 2016 A1
20170077654 Yao et al. Mar 2017 A1
20170352970 Liang et al. Dec 2017 A1
20180062323 Kirk et al. Mar 2018 A1
20180145438 Cohen May 2018 A1
20180166828 Gailus Jun 2018 A1
20180198220 Sasame et al. Jul 2018 A1
20180205177 Zhou et al. Jul 2018 A1
20180212376 Wang et al. Jul 2018 A1
20180212385 Little Jul 2018 A1
20180219331 Cartier, Jr. et al. Aug 2018 A1
20180241156 Huang et al. Aug 2018 A1
20180269607 Wu et al. Sep 2018 A1
20180331444 Ono Nov 2018 A1
20190006778 Fan et al. Jan 2019 A1
20190052019 Huang et al. Feb 2019 A1
20190067854 Ju et al. Feb 2019 A1
20190173209 Lu et al. Jun 2019 A1
20190173232 Lu et al. Jun 2019 A1
20190334292 Cartier, Jr. et al. Oct 2019 A1
20200021052 Milbrand, Jr. et al. Jan 2020 A1
20200076132 Yang et al. Mar 2020 A1
20200153134 Sasame et al. May 2020 A1
20200161811 Lu May 2020 A1
20200203865 Wu et al. Jun 2020 A1
20200203867 Lu Jun 2020 A1
20200203886 Wu et al. Jun 2020 A1
20200220289 Scholeno et al. Jul 2020 A1
20200235529 Kirk et al. Jul 2020 A1
20200259294 Lu Aug 2020 A1
20200266584 Lu Aug 2020 A1
20200266585 Paniagua et al. Aug 2020 A1
20200335914 Hsu et al. Oct 2020 A1
20200358226 Lu et al. Nov 2020 A1
20200395698 Hou et al. Dec 2020 A1
20200403350 Hsu Dec 2020 A1
20210135389 Jiang May 2021 A1
20210135404 Jiang May 2021 A1
20210159643 Kirk et al. May 2021 A1
20210175670 Cartier, Jr. et al. Jun 2021 A1
20210203096 Cohen Jul 2021 A1
20210218195 Hsu et al. Jul 2021 A1
20210234314 Johnescu et al. Jul 2021 A1
20210234315 Ellison et al. Jul 2021 A1
Foreign Referenced Citations (211)
Number Date Country
1075390 Aug 1993 CN
1098549 Feb 1995 CN
1192068 Sep 1998 CN
1237652 Dec 1999 CN
1265470 Sep 2000 CN
2400938 Oct 2000 CN
1276597 Dec 2000 CN
1280405 Jan 2001 CN
1299524 Jun 2001 CN
2513247 Sep 2002 CN
2519434 Oct 2002 CN
2519458 Oct 2002 CN
2519592 Oct 2002 CN
1394829 Feb 2003 CN
1398446 Feb 2003 CN
1471749 Jan 2004 CN
1489810 Apr 2004 CN
1491465 Apr 2004 CN
1516723 Jul 2004 CN
1179448 Dec 2004 CN
1561565 Jan 2005 CN
1203341 May 2005 CN
1639866 Jul 2005 CN
1650479 Aug 2005 CN
1764020 Apr 2006 CN
1799290 Jul 2006 CN
2798361 Jul 2006 CN
2865050 Jan 2007 CN
2896615 May 2007 CN
1985199 Jun 2007 CN
1996678 Jul 2007 CN
2930006 Aug 2007 CN
101019277 Aug 2007 CN
101032060 Sep 2007 CN
201000949 Jan 2008 CN
101176389 May 2008 CN
101208837 Jun 2008 CN
101273501 Sep 2008 CN
201112782 Sep 2008 CN
101312275 Nov 2008 CN
101316012 Dec 2008 CN
201222548 Apr 2009 CN
201252183 Jun 2009 CN
101552410 Oct 2009 CN
201323275 Oct 2009 CN
101600293 Dec 2009 CN
201374433 Dec 2009 CN
201374434 Dec 2009 CN
101752700 Jun 2010 CN
101790818 Jul 2010 CN
101120490 Nov 2010 CN
101926055 Dec 2010 CN
101964463 Feb 2011 CN
201846527 May 2011 CN
102106041 Jun 2011 CN
102195173 Sep 2011 CN
102224640 Oct 2011 CN
102232259 Nov 2011 CN
102239605 Nov 2011 CN
102292881 Dec 2011 CN
101600293 May 2012 CN
102456990 May 2012 CN
102487166 Jun 2012 CN
102570100 Jul 2012 CN
102593661 Jul 2012 CN
102598430 Jul 2012 CN
202395248 Aug 2012 CN
102694318 Sep 2012 CN
102738621 Oct 2012 CN
102859805 Jan 2013 CN
202695788 Jan 2013 CN
202695861 Jan 2013 CN
103036081 Apr 2013 CN
103594871 Feb 2014 CN
203445304 Feb 2014 CN
103840285 Jun 2014 CN
203690614 Jul 2014 CN
204030057 Dec 2014 CN
204167554 Feb 2015 CN
104409906 Mar 2015 CN
204190038 Mar 2015 CN
104577577 Apr 2015 CN
104659573 May 2015 CN
204349140 May 2015 CN
105633660 Jun 2016 CN
106099546 Nov 2016 CN
107069281 Aug 2017 CN
304240766 Aug 2017 CN
304245430 Aug 2017 CN
206712089 Dec 2017 CN
207677189 Jul 2018 CN
208078300 Nov 2018 CN
208797273 Apr 2019 CN
109994892 Jul 2019 CN
210326355 Apr 2020 CN
112072400 Dec 2020 CN
4109863 Oct 1992 DE
4238777 May 1993 DE
19853837 Feb 2000 DE
102006044479 May 2007 DE
60216728 Nov 2007 DE
0 560 551 Sep 1993 EP
0774807 May 1997 EP
0903816 Mar 1999 EP
1 018 784 Jul 2000 EP
1 779 472 May 2007 EP
2 169 770 Mar 2010 EP
2388867 Nov 2011 EP
2 405 537 Jan 2012 EP
1272347 Apr 1972 GB
2161658 Jan 1986 GB
2283620 May 1995 GB
1043254 Sep 2002 HK
H3-156761 Jul 1991 JP
H05-54201 Mar 1993 JP
H05-234642 Sep 1993 JP
H07-57813 Mar 1995 JP
H07-302649 Nov 1995 JP
H09-63703 Mar 1997 JP
H09-274969 Oct 1997 JP
2711601 Feb 1998 JP
H11-67367 Mar 1999 JP
2896836 May 1999 JP
H11-233200 Aug 1999 JP
H11-260497 Sep 1999 JP
2000-013081 Jan 2000 JP
2000-311749 Nov 2000 JP
2001-068888 Mar 2001 JP
2001-510627 Jul 2001 JP
2001-217052 Aug 2001 JP
2002-042977 Feb 2002 JP
2002-053757 Feb 2002 JP
2002-075052 Mar 2002 JP
2002-075544 Mar 2002 JP
2002-117938 Apr 2002 JP
2002-151190 May 2002 JP
2002-246107 Aug 2002 JP
2003-017193 Jan 2003 JP
2003-309395 Oct 2003 JP
2004-192939 Jul 2004 JP
2004-259621 Sep 2004 JP
3679470 Aug 2005 JP
2006-344524 Dec 2006 JP
2009-043717 Feb 2009 JP
2009-110956 May 2009 JP
2010-129173 Jun 2010 JP
9907324 Aug 2000 MX
466650 Dec 2001 TW
517002 Jan 2003 TW
534494 May 2003 TW
200501874 Jan 2005 TW
200515773 May 2005 TW
M274675 Sep 2005 TW
M329891 Apr 2008 TW
M357771 May 2009 TW
200926536 Jun 2009 TW
M474278 Mar 2014 TW
M494411 Jan 2015 TW
M518837 Mar 2016 TW
I535129 May 2016 TW
M534922 Jan 2017 TW
I596840 Aug 2017 TW
M558481 Apr 2018 TW
M558482 Apr 2018 TW
M558483 Apr 2018 TW
M559006 Apr 2018 TW
M559007 Apr 2018 TW
M560138 May 2018 TW
M562507 Jun 2018 TW
M565894 Aug 2018 TW
M565895 Aug 2018 TW
M565899 Aug 2018 TW
M565900 Aug 2018 TW
M565901 Aug 2018 TW
M605564 Dec 2020 TW
WO 8502265 May 1985 WO
WO 8805218 Jul 1988 WO
WO 9835409 Aug 1998 WO
WO 0139332 May 2001 WO
WO 0157963 Aug 2001 WO
WO 2002061892 Aug 2002 WO
WO 03013199 Feb 2003 WO
WO 03047049 Jun 2003 WO
WO 2004034539 Apr 2004 WO
WO 2004051809 Jun 2004 WO
WO 2004059794 Jul 2004 WO
WO 2004059801 Jul 2004 WO
WO 2004114465 Dec 2004 WO
WO 2005011062 Feb 2005 WO
WO 2005114274 Dec 2005 WO
WO 2006039277 Apr 2006 WO
WO 2007005597 Jan 2007 WO
WO 2007005598 Jan 2007 WO
WO 2007005599 Jan 2007 WO
WO 2008124052 Oct 2008 WO
WO 2008124054 Oct 2008 WO
WO 2008124057 Oct 2008 WO
WO 2008124101 Oct 2008 WO
WO 2009111283 Sep 2009 WO
WO 2010030622 Mar 2010 WO
WO 2010039188 Apr 2010 WO
WO 2011100740 Aug 2011 WO
WO 2011106572 Sep 2011 WO
WO 2011139946 Nov 2011 WO
WO 2011140438 Nov 2011 WO
WO 2011140438 Dec 2011 WO
WO 2012106554 Aug 2012 WO
WO 2013059317 Apr 2013 WO
WO 2015112717 Jul 2015 WO
WO 2017007429 Jan 2017 WO
WO 2018039164 Mar 2018 WO
Non-Patent Literature Citations (185)
Entry
Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020.
Chinese Office Action dated Jan. 18, 2021 in connection with Chinese Application No. 202010031395.7.
Chinese Office Action for Application No. 201680051491.X dated Apr. 30, 2019.
Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019.
Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020.
Chinese Office Action for Chinese Application No. 201780097919.9, dated Mar. 10, 2021.
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012.
International Preliminary Report on Patentability Chapter II for International Application No. PCT/CN2017/108344 dated Mar. 6, 2020.
International Preliminary Report on Patentability for International Application No. PCT/SG2016/050317 dated Jan. 18, 2018.
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012.
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012.
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013.
International Search Report and Written Opinion for International Application No. PCT/CN2017/108344 dated Aug. 1, 2018.
International Search Report and Written Opinion for International Application No. PCT/SG2016/050317 dated Oct. 18, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006.
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017.
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007.
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013.
[No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 1, 2008.—40 pages.
[No Author Listed], Military Fibre Channel High Speed Cable Assembly, www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.--fibre . . . Last archive date Apr. 6, 2008.
[No Author Listed], SFF-TA-1016 Specification for Internal Unshielded High Speed Connector System. Rev 0.0.1. SNIA SFF TWG Technology Affiliate. Nov. 15, 2019. 40 pages.
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7.
Jiang, High-Frequency Electrical Connector With Interlocking Segments, U.S. Appl. No. 17/089,905, filed Nov. 5, 2020.
Jiang, High-Frequency Electrical Connector With Lossy Member, U.S. Appl. No. 17/089,934, filed Nov. 5, 2020.
Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91.
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56.
CN 200580040906.5, Aug. 17, 2021, Chinese Invalidation Request.
CN 200680023997.6, Jun. 1, 2021, Chinese Invalidation Request.
CN 201110008089.2, Sep. 9, 2021, Chinese Invalidation Request.
CN 201180033750.3, Jun. 15, 2021, Chinese Invalidation Request.
CN 201210249710.9, Jun. 17, 2021, Chinese Supplemental Observations.
CN 201610952606.4, Mar. 17, 2021, Chinese Invalidation Request.
CN 201780097919.9, Dec. 3, 2021, Chinese Office Action.
CN 202010467444.1, Apr. 2, 2021, Chinese Office Action.
CN 202010825662.8, Sep. 3, 2021, Chinese Office Action.
CN 202010922401.8, Aug. 6, 2021, Chinese Office Action.
EP 17930428.2, May 19, 2021, Extended European Search Report.
PCT/US2005/034605, Apr. 3, 2007, International Preliminary Report on Patentability.
PCT/US2006/025562, Jan. 8, 2008, International Preliminary Report on Patentability.
PCT/US2012/060610, May 1, 2014, International Preliminary Report on Patentability.
PCT/US2015/012463, Aug. 4, 2016, International Preliminary Report on Patentability.
TW 106128439, Mar. 5, 2021, Taiwanese Office Action.
Extended European Search Report dated May 19, 2021 in connection with European Application No. 17930428.2.
Chinese Office Action for Chinese Application No. 201780097919.9, dated Dec. 3, 2021.
International Preliminary Report on Patentability for International Application No. PCT/US2005/034605 dated Apr. 3, 2007.
International Preliminary Report on Patentability for International Application No. PCT/US2006/025562 dated Jan. 9, 2008.
International Preliminary Report on Patentability for International Application No. PCT/US2012/060610 dated May 1, 2014.
International Preliminary Report on Patentability for International Application No. PCT/US2015/012463 dated Aug. 4, 2016.
Taiwanese Office Action dated Mar. 5, 2021 in connection with Taiwanese Application No. 106128439.
Chinese Office Action for Chinese Application No. 202010467444.1 dated Apr. 2, 2021.
Chinese Office Action for Chinese Application No. 202010825662.8 dated Sep. 3, 2021.
Chinese Office Action for Chinese Application No. 202010922401.8 dated Aug. 6, 2021.
Chinese Invalidation Request dated Aug. 17, 2021 in connection with Chinese Application No. 200580040906.5.
Chinese Invalidation Request dated Mar. 17, 2021 in connection with Chinese Application No. 201610952606.4.
Chinese Supplemental Observations dated Jun. 17, 2021 in connection with Chinese Application No. 201210249710.9.
Chinese Invalidation Request dated Jun. 1, 2021 in connection with Chinese Application No. 200680023997.6.
Chinese Invalidation Request dated Jun. 15, 2021 in connection with Chinese Application No. 201180033750.3.
Chinese Invalidation Request dated Sep. 9, 2021 in connection with Chinese Application No. 201110008089.2.
Petition for Inter Partes Review. Luxshare Precision Industry Co., Ltd v. Amphenol Corp. U.S. Pat. No. 10,381,767. IPR2022-00132. Nov. 4, 2021. 112 pages.
Decision Invalidating CN Patent Application No. 201610952606.4, which issued as CN Utility Model Patent No. 107069274B, and Certified Translation.
In re Certain Electrical Connectors and Cages, Components Thereof, and Prods. Containing the Same, Inv. No. 337-TA-1241, Order No. 31 (Oct. 19, 2021): Construing Certain Terms of the Asserted Claims of the Patents at Issue.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Initial Post-Hearing Brief. Public Version. Nov. 23, 2021. 348 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Reply Post-Hearing Brief. Public Version. Dec. 6, 2021. 165 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Corrected Initial Post-Hearing Brief. Public Version. Jan. 5, 2022. 451 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Post-Hearing Reply Brief. Public Version. Dec. 6, 2021. 159 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Notice of Prior Art. Jun. 3, 2021. 319 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Respondents' Pre-Hearing Brief. Redacted. Oct. 21, 2021. 219 pages.
Invalidity Claim Charts Based on CN 201112782Y (“Cai”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 25. May 7, 2021. 147 pages.
Invalidity Claim Charts Based on U.S. Pat. No. 6,179,651 (“Huang”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 26. May 7, 2021. 153 pages.
Invalidity Claim Charts Based on U.S. Pat. No. 7,261,591 (“Korsunsky”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 27. May 7, 2021. 150 pages.
[No Author Listed], All About ESD Plastics. Evaluation Engineering. Jul. 1, 1998. 8 pages. https://www.evaluationengineering.com/home/article/13001136/all-about-esdplastics [last accessed Mar. 14, 2021].
[No Author Listed], AMP Incorporated Schematic, Cable Assay, 2 Pair, HMZD. Oct. 3, 2002. 1 page.
[No Author Listed], Board to Backplane Electrical Connector. The Engineer. Mar. 13, 2001, [last accessed Apr. 30, 2021]. 2 pages.
[No Author Listed], Borosil Vision Mezzo Mug Set of 2. Zola. 3 pages. https://www.zola.com/shop/product/borosil_vision_mezzao_mug_setof2_3.25. [date retrieved May 4, 2021].
[No Author Listed], Cable Systems. Samtec. Aug. 2010. 148 pages.
[No Author Listed], Coating Electrical Contacts. Brush Wellman Engineered Materials. Jan. 2002;4(1). 2 pages.
[No Author Listed], Common Management Interface Specification. Rev 4.0. MSA Group. May 8, 2019. 265 pages.
[No Author Listed], Electronics Connector Overview. FCI. Sep. 23, 2009. 78 pages.
[No Author Listed], EMI Shielding Compounds Instead of Metal. RTP Company. Last Accessed Apr. 3, 20210. 2 pages.
[No Author Listed], EMI Shielding Solutions and EMC Testing Services from Laird Technologies. Laird Technologies. Last acessed Apr. 30, 2021. 1 page.
[No Author Listed], EMI Shielding, Dramatic Cost Reductions for Electronic Device Protection. RTP. Jan. 2000. 10 pages.
[No Author Listed], Excerpt from The Concise Oxford Dictionary, Tenth Edition. 1999. 3 pages.
[No Author Listed], Excerpt from The Merriam-Webster Dictionary, Between. 2005. 4 pages.
[No Author Listed], Excerpt from Webster's Third New International Dictionary, Contact. 1986. 3 pages.
[No Author Listed], FCI—High Speed Interconnect Solutions, Backpanel Connectors. FCI. [last accessed Apr. 30, 2021). 2 pages.
[No Author Listed], General Product Specification for GbX Backplane and Daughtercard Interconnect System. Revision “B”. Teradyne. Aug. 23, 2005. 12 pages.
[No Author Listed], HOZOX EMI Absorption Sheet and Tape. Molex. Laird Technologies. 2013. 2 pages.
[No Author Listed], INF-8074i Specification for SFP (Small Formfactor Pluggable) Transceiver. SFF Committee. Revision 1.0. May 12, 2001. 39 pages.
[No Author Listed], INF-8438i Specification for QSFP (Quad Small Formfactor Pluggable) Transceiver. Rev 1.0 Nov. 2006. SFF Committee. 76 pages.
[No Author Listed], Interconnect Signal Integrity Handbook. Samtec. Aug. 2007. 21 pages.
[No Author Listed], Metallized Conductive Products: Fabric-Over-Foam, Conductive Foam, Fabric, Tape. Laird Technologies. 2003. 32 pages.
[No Author Listed], Metral® 2000 Series. FCI. 2001. 2 pages.
[No Author Listed], Metral® 2mm High-Speed Connectors 1000, 2000, 3000 Series. FCI. 2000. 119 pages.
[No Author Listed], Metral® 3000 Series. FCI. 2001. 2 pages.
[No Author Listed], Metral® 4000 Series. FCI. 2002. 2 pages.
[No Author Listed], Metral® 4000 Series: High-Speed Backplane Connectors. FCI, Rev. 3. Nov. 30, 2001. 21 pages.
[No Author Listed], Molex Connectors as InfiniBand Solutions. Design World. Nov. 19, 2008. 7 pages, https://www.designworldonline.com/molex-connectors-as-infiniband-solutions/. [last accessed May 3, 2021].
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.11. OSFP MSA. Jun. 26, 2017. 53 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.12. OSFP MSA. Aug. 1, 2017. 53 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 2.0 OSFP MSA. Jan. 14, 2019. 80 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 3.0 OSFP MSA. Mar. 14, 2020. 99 pages.
[No Author Listed], Photograph of Molex Connector. Oct. 2021. 1 page.
[No Author Listed], Photograph of TE Connector. Oct. 2021. 1 page.
[No Author Listed], Pluggable Form Products. Tyco Electronics. Mar. 5, 2006. 1 page.
[No Author Listed], Pluggable Input/Output Solutions. Tyco Electronics Catalog 1773408-1. Revised Feb. 2009. 40 pages.
[No Author Listed], QSFP Market Evolves, First Products Emerge. Lightwave. Jan. 22, 2008. pp. 1-8. https://www.lightwaveonline.com/home/article/16662662.
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 3.0. QSFP-DD MSA. Sep. 19, 2017. 69 pages.
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 4.0. QSFP-DD MSA. Sep. 18, 2018. 68 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiever. Revision 5.0. QSFP-DD-MSA. Jul. 9, 2019. 82 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 5.1. QSFP-DD MSA. Aug. 7, 2020. 84 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 1.0. QSFP-DD-MSA. Sep. 15, 2016. 69 pages.
[No Author Listed], QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver Specification, Rev. 2.0. QSFP-DD MSA. Mar. 13, 2017. 106 pages.
[No Author Listed], RTP Company Introduces “Smart” Plastics for Bluetooth Standard. Press Release. RTP. Jun. 4, 2001. 2 pages.
[No Author Listed], RTP Company Specialty Compounds. RTP. Mar. 2002. 2 pages.
[No Author Listed], RTP Company-EMI/RFI Shielding Compounds (Conductive) Data Sheets. RTP Company. Last accessed Apr. 3, 20210. 4 pages.
[No Author Listed], Samtec Board Interface Guide. Oct. 2002. 253 pages.
[No Author Listed], SFF Committee SFF-8079 Specification for SFP Rate and Application Selection. Revision 1.7. SFF Committee. Feb. 2, 2005. 21 pages.
[No Author Listed], SFF Committee SFF-8089 Specification for SFP (Small Formfactor Pluggable) Rate and Application Codes. Revision 1.3. SFF Committee. Feb. 3, 2005. 18 pages.
[No Author Listed], SFF Committee SFF-8436 Specification for QSFP+ 4X 10 GB/s Pluggable Transceiver. Revision 4.9. SFF Committee. Aug. 31, 2018. 88 pages.
[No Author Listed], SFF Committee SFF-8665 Specification for QSFP+ 28 GB/s 4X Pluggable Transceiver Solution (QSFP28). Revision 1.9. SFF Committee. Jun. 29, 2015. 14 pages.
[No Author Listed], SFF-8075 Specification for PCI Card Version of SFP Cage. Rev 1.0. SFF Committee. Jul. 3, 2001. 11 pages.
[No Author Listed], SFF-8431 Specifications for Enhanced Small Form Factor Pluggable Module SFP+. Revision 4.1. SFF Committee. Jul. 6, 2009. 132 pages.
[No Author Listed], SFF-8432 Specification for SFP+ Module and Cage. Rev 5.1. SFF Committee. Aug. 8, 2012. 18 pages.
[No Author Listed], SFF-8433 Specification for SFP+ Ganged Cage Footprints and Bezel Openings. Rev 0.7. SFF Committee. Jun. 5, 2009. 15 pages.
[No Author Listed], SFF-8477 Specification for Tunable XFP for ITU Frequency Grid Applications. Rev 1.4. SFF Committee. Dec. 4, 2009. 13 pages.
[No Author Listed], SFF-8672 Specification for QSFP+ 4x 28 GB/s Connector (Style B). Revision 1.2. SNIA. Jun. 8, 2018. 21 pages.
[No Author Listed], SFF-8679 Specification for QSFP+ 4X Base Electrical Specification. Rev 1.7. Aug. 12, 2014. 31 pages.
[No Author Listed], SFF-8682 Specification for QSFP+ 4X Connector. Rev 1.1. SNIA SFF TWG Technology Affiliate. Jun. 8, 2018. 19 pages.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 1 page.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20030226182710/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_3 .htm.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20021223144443/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_2.htm.
[No Author Listed], Signal Integrity—Multi-Gigabit Transmission Over Backplane Systems. International Engineering Consortium. 2003; 1-8.
[No Author Listed], Signal Integrity Considerations for 10Gbps Transmission over Backplane Systems. DesignCon2001. Teradyne Connections Systems, Inc. 2001. 47 pages.
[No Author Listed], Specification for OSFP Octal Small Form Factor Pluggable Module. Rev 1.0. OSFP MSA. Mar. 17, 2017. 53 pages.
[No Author Listed], TB-2092 GbX Backplane Signal and Power Connector Press-Fit Installation Process. Teradyne. Aug. 8, 2002;1-9.
[No Author Listed], Teradyne Beefs Up High-Speed GbX Connector Platform. EE Times. Sep. 20, 2005. 3 pages.
[No Author Listed], Teradyne Connection Systems Introduces the GbX L-Series Connector. Press Release. Teradyne. Mar. 22, 2004. 5 pages.
[No Author Listed], Teradyne Schematic, Daughtercard Connector Assembly 5 Pair GbX, Drawing No. C-163-5101-500. Nov. 6, 2002. 1 page.
[No Author Listed], Tin as a Coating Material. Brush Wellman Engineered Materials. Jan. 2002;4(2). 2 pages.
[No Author Listed], Two and Four Pair HM-Zd Connectors. Tyco Electronics. Oct. 14, 2003;1-8.
[No Author Listed], Tyco Electronics Schematic, Header Assembly, Right Angle, 4 Pair HMZd, Drawing No. C-1469048. Jan. 10, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 2 Pair 25mm HMZd, Drawing No. C-1469028. Apr. 24, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 3 Pair 25mm HMZd, Drawing No. C1469081. May 13, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 4 Pair HMZd, Drawing No. C1469001. Apr. 23, 2002. 1 page.
[No Author Listed], Tyco Electronics Z-Dok+ Connector. May 23, 2003. pp. 1-15. http://zdok.tycoelectronics.com.
[No Author Listed], Tyco Electronics, SFP System. Small Form-Factor Pluggable (SFP) System. Feb. 2001. 1 page.
[No Author Listed], Typical conductive additives—Conductive Compounds. RTP Company. https://www.rtpcompany.com/products/conductive/additives.htm. Last accessed Apr. 30, 2021. 2 pages.
[No Author Listed], Z-Pack HM-Zd Connector, High Speed Backplane Connectors. Tyco Electronics. Catalog 1773095. 2009;5-44.
[No Author Listed], Z-Pack HM-Zd: Connector Noise Analysis for XAUI Applications. Tyco Electronics. Jul. 9, 2001. 19 pages.
Atkinson et al., High Frequency Electrical Connector, U.S. Appl. No. 15/645,931, filed Jul. 10, 2017.
Chung, Electrical applications of carbon materials. J. of Materials Science. 2004;39:2645-61.
Dahman, Recent Innovations of Inherently Conducting Polymers for Optimal (106-109 Ohm/Sq) ESD Protection Materials. RTD Company. 2001. 8 pages.
Do et al., A Novel Concept Utilizing Conductive Polymers on Power Connectors During Hot Swapping in Live Modular Electronic Systems. IEEE Xplore 2005; downloaded Feb. 18, 2021;340-345.
Eckardt, Co-Injection Charting New Territory and Opening New Markets. Battenfeld GmbH. Journal of Cellular Plastics. 1987;23:555-92.
Elco, Metral® High Bandwidth—A Differential Pair Connector for Applications up to 6 GHz. FCI. Apr. 26, 1999;1-5.
Feller et al., Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Materials Letters. Feb. 21, 2002;57:64-71.
Getz et al., Understanding and Eliminating EMI in Microcontroller Applications. National Semiconductor Corporation. Aug. 1996. 30 pages.
Grimes et al., A Brief Discussion of EMI Shielding Materials. IEEE. 1993:217-26.
Housden et al., Moulded Interconnect Devices. Prime Faraday Technology Watch. Feb. 2002. 34 pages.
Liu et al., Compact, High Speed Electrical Connector, U.S. Appl. No. 17/477,352, filed Sep. 16, 2021.
Liu et al., High Speed Electrical Connector, U.S. Appl. No. 17/477,391, filed Sep. 16, 2021.
McAlexander, CV of Joseph C. McAlexander III. Exhibit 1009. 2021. 31 pages.
McAlexander, Declaration of Joseph C. McAlexander III in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,381,767. Exhibit 1002. Nov. 4, 2021. 85 pages.
Nadolny et al., Optimizing Connector Selection for Gigabit Signal Speeds. Sep. 2000. 5 pages.
Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. CRC. 1995. 246 pages.
Okinaka, Significance of Inclusions in Electroplated Gold Films for Electronics Applications. Gold Bulletin. Aug. 2000;33(4):117-127.
Ott, Noise Reduction Techniques In Electronic Systems. Wiley. Second Edition. 1988. 124 pages.
Patel et al., Designing 3.125 Gbps Backplane System. Teradyne. 2002. 58 pages.
Preusse, Insert Molding vs. Post Molding Assembly Operations. Society of Manufacturing Engineers. 1998. 8 pages.
Ross, Focus on Interconnect: Backplanes Get Reference Designs. EE Times. Oct. 27, 2003 [last accessed Apr. 30, 2021]. 4 pages.
Ross, GbX Backplane Demonstrator Helps System Designers Test High-Speed Backplanes. EE Times. Jan. 27, 2004 [last accessed May 5, 2021]. 3 pages.
Silva et al., Conducting Materials Based on Epoxy/Graphene Nanoplatelet Composites With Microwave Absorbing Properties: Effect of the Processing Conditions and Ionic Liquid. Frontiers in Materials. Jul. 2019;6(156):1-9. doi: 10.3389/fmats.2019.00156.
Tracy, Rev. 3.0 Specification IP (Intellectual Property). Mar. 20, 2020. 8 pages.
Violette et al., Electromagnetic Compatibility Handbook. Van Nostrand Reinhold Company Inc. 1987. 229 pages.
Wagner et al., Recommended Engineering Practice to Enhance the EMI/EMP Immunity of Electric Power Systems. Electric Research and Management, Inc. Dec. 1992. 209 pages.
Weishalla, Smart Plastic for Bluetooth. RTP Imagineering Plastics. Apr. 2001. 7 pages.
White, A Handbook on Electromagnetic Shielding Materials and Performance. Don Whie Consultants. 1998. Second Edition. 77 pages.
White, EMI Control Methodology and Procedures. Don White Consultants, Inc. Third Edition 1982. 22 pages.
Williams et al., Measurement of Transmission and Reflection of Conductive Lossy Polymers at Millimeter-Wave Frequencies. IEEE Transactions on Electromagnetic Compatibility. Aug. 1990;32(3):236-240.
Related Publications (1)
Number Date Country
20210050683 A1 Feb 2021 US
Continuations (2)
Number Date Country
Parent 16745995 Jan 2020 US
Child 17085342 US
Parent 15742244 US
Child 16745995 US