The invention relates generally to electrical connectors, and more particularly, to a modular connector with compensation for crosstalk among multiple signal paths through the connector.
In electrical systems, there is increasing concern for preserving signal integrity as signal speed and bandwidth increase. One source of signal degradation is crosstalk between multiple signal paths. In the case of an electrical connector carrying multiple signals, crosstalk occurs when signals conducted over a first signal path are partly transferred by inductive or capacitive coupling into a second signal path. The transferred signals produce crosstalk in the second path that degrades the signal routed over the second path.
For example, a typical industry standard type RJ-45 communication connector includes four pairs of conductors defining four different signal paths. In conventional RJ-45 plug and jack connectors, all four pairs of conductors extend closely parallel to one another over a length of the connector body. Thus, signal crosstalk may be induced between and among different pairs of connector conductors. The amplitude of the crosstalk, or the degree of signal degradation, generally increases as the frequency increases. It is desirable to suppress or compensate for crosstalk, and ideally, the crosstalk compensation should be introduced as close as possible to the source of the crosstalk.
In the case of RJ-45 connectors, the plug design is controlled by industry standards which require it to contain a substantial amount of crosstalk. Therefore, efforts to counteract crosstalk are typically applied to the mating jack. In one approach, terminal contacts in the jack are formed with free ends that are deflected to contact a compensation coupling contact when a plug is mated with the jack. See, for example, U.S. Pat. No. 6,350,158. In general, the effectiveness of these measures is influenced by the proximity of the corrective measure to the main source of the crosstalk, e.g., the mating plug.
In one aspect, an electrical jack is provided. The electrical jack includes a housing having a mating end configured to receive a mating plug. A plurality of signal contacts are arranged in differential pairs, and each of the signal contacts carries a signal from or to a plug contact in the mating plug. A plurality of compensation contacts are provided. Each compensation contact engages a respective plug contact in the mating plug independent of the signal contact, and the compensation contacts provide crosstalk compensation.
Optionally, the jack further includes one or more compensation elements selected to provide a desired crosstalk compensation, and at least two of the compensation contacts are connected to the compensation elements. The jack also includes a first circuit board and a second circuit board. The first circuit board holds the signal contacts and, the compensation contacts are connected to the second circuit board. The second circuit board includes the compensation elements. Alternatively, the compensation contacts are held in the housing and compensation elements are connected to the compensation contacts. The compensation contacts are non-current carrying contacts.
In another aspect, an electrical jack includes a housing having a mating end configured to receive a mating plug. A plurality of signal contacts carry signals from or to a plug contact in the mating plug. A plurality of compensation contacts are provided. Selected ones of the compensation contacts are connected to respective compensation elements. The compensation elements are selected to provide a desired noise compensation. The noise compensation is applied to a noise source in the mating plug.
The jack 10 includes a housing 20 that has a base portion 22 and a shell 24. The shell 24 includes a mating face 26 that defines an opening 28 that is configured to receive the mating plug 12. Latch members 29 on the base portion 22 are received in slots 30 in the shell 24 to retain the shell to the base portion 22 with snap fit engagement. The housing 20 includes a plurality of signal contacts 32 and a plurality of compensation contacts 34 in an interior of the shell 24. The compensation contacts 34 may or may not be equal in number to the number of signal contacts 32.
The plug 12 includes a plug housing 40 that receives a cable 42 that includes a number of signal wires 44 that are arranged in differential pairs. Each signal wire 44 is attached to a plug contact 50 (
In an exemplary embodiment, the jack insert 52 is contained within the jack housing 20. The jack insert 52 includes a first circuit board 60 and a second circuit board 62. The signal contacts 32 are mounted in the first circuit board 60. The signal contacts 32 are arranged in differential pairs. Traces in the first circuit board 60 electrically connect each signal contact 32 to a respective aperture 64 that is configured to receive an output terminal (not shown) that electrically connects the signal contact 32 to an output wire (not shown) that carries one of the differential signals from or to the plug 12 when the plug 12 is mated to the jack 10.
The second circuit board 62 includes an upper surface 70, a lower surface 72, an inward end 74 proximate the first circuit board 60, and an outward end 76 proximate the mating face 26 of the jack 10 (
More specifically, the compensation elements are selected to provide a desired crosstalk compensation to counteract crosstalk at the plug contacts in the mating plug 12 through direct contact of the compensation contacts 34 with the plug contacts 50. From the perspective of the jack 10, the plug contacts 50 and the portion of the wires 44 contained within the plug housing 40 (
In one embodiment, the compensation elements (not shown) include a conductive element that provides a reactance that is configured to counteract the crosstalk that is seen in the plug 12. In an exemplary embodiment, the reactance primarily includes a capacitance. The compensation elements may be formed using techniques well known in the art for such purposes. For example, two or more compensation contacts 34 may be placed in close proximity to each other so as to create the reactance to counteract the crosstalk. Another method may include placing conductors on the circuit board 62 in close proximity to one another, such as interlaced or aligned copper pairs. A third method may include placing discrete chips such as a capacitor on the circuit board 62. Still another method may include placing conductive plates in proximity with one another (see
Each signal contact 32 includes an engagement end 78 that engages the plug contact 50 when the plug 12 (
In an exemplary embodiment, each compensation contact 34 includes an attachment loop 82 that loops over the outward end 76 of the circuit board 62. Bend portions 84 cooperate with the loop 82 so that the compensation contact 34 grasps the outward end 76 of the second circuit board 62 to frictionally engage the upper and lower surfaces 70 and 72 of the second circuit board 62. A contact arch 86 mates with the plug contact 50 when the plug 12 is mated with the jack 10. The compensation contacts 34 may be electrically connected to the second circuit board 62 through contact pads 88. In one embodiment, the contact pads 88 are placed on the upper surface 70 of the second circuit board 62. In other embodiments, the contact pads may be placed on either or both of the upper and lower surfaces, 70 and 72 respectively, of the second circuit board 62. In alternative embodiments, the compensation contacts 34 may take other forms. For instance, the compensation contacts may include mounting ends that are mounted in the second circuit board 62 and curved contact ends as opposed to the contact arches 86.
The second circuit board 62 includes compensation elements (not shown) that are electrically connected to some or all of the compensation contacts 34. The compensation elements are each selected and configured to provide a predetermined amount of crosstalk compensation to the signal at the mating plug contacts 50. The crosstalk compensation is applied directly to the plug contacts 50 of the mating plug 12. The compensation contacts 34 are themselves non-current carrying contacts such that the crosstalk compensation is applied to the signal at the plug contacts 50 to effectively eliminate any electrical delay in the application of compensation to the plug contacts 50.
In the embodiment shown in
The embodiments thus described provide a modular jack 10 that compensates for crosstalk in the signals from a mating plug 12. The jack 10 applies the crosstalk compensation at the source of the crosstalk. The jack 10 includes a signal contact 32 and a separate compensation contact 34, 92 both of which engage the plug contact 50 of the mating plug 12. Crosstalk compensation is applied directly to the plug contact 50 of the plug 12. The compensation contact 34, 92 is a non-current carrying contact. In this manner compensation is effectively applied to the plug contact 50 without any electrical delay.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3790916 | Keitel | Feb 1974 | A |
6139371 | Troutman et al. | Oct 2000 | A |
6155881 | Arnett et al. | Dec 2000 | A |
6176742 | Arnett et al. | Jan 2001 | B1 |
6186834 | Arnett et al. | Feb 2001 | B1 |
6244907 | Arnett | Jun 2001 | B1 |
6350158 | Arnett et al. | Feb 2002 | B1 |
6371793 | Doorhy et al. | Apr 2002 | B1 |
6409547 | Reede | Jun 2002 | B1 |
6468097 | Bernstein | Oct 2002 | B1 |
6547604 | Arnett et al. | Apr 2003 | B1 |
6736681 | Arnett | May 2004 | B1 |
6764343 | Ferentz | Jul 2004 | B1 |
6767257 | Arnett et al. | Jul 2004 | B1 |
6769937 | Roberts | Aug 2004 | B1 |