This invention relates to a snap fit electrical connector for connecting an electrical conductor to an electrical box, and more specifically to an electrical connector having a detachable snap fit, retaining ring having a face portion and a generally frustro-conical shape circumscribing the face portion and having integrally formed thereon a series of resilient locking tangs and grounding tangs.
Electrical connectors are commonly used for attaching electrical conductors, cables, wires, electrical metal tubing or the like to an electric box, e.g. a junction box, outlet box, switch box or other similar type of electric box. Such known electrical connectors are either of a type that are secured to an electric box by a threaded lock nut or by means of a circular snap fit retaining ring of the type disclosed on the above identified co-pending applications or as disclosed in U.S. patents, such as U.S. Pat. Nos. 6,444,907; 5,189,258; 5,266,050; 5,171,164; 2,744,769 and 1,483,218 for example. Reference is also made to U.S. Pat. No. 6,768,057 which is directed to a right angle type connector formed of a pair of sheet metal stampings fitted together and secured to an electrical box with a snap fit arrangement. Connectors formed as connector caps which are adapted to be fitted over the end of a conductor, cable or wires, such as disclosed in U.S. Pat. No. 4,880,387, are also known. While such prior known connectors can be satisfactorily used for their intended purposes, efforts are constantly being made to improve upon the known electrical connectors. The disclosure herein comprises another effort to advance or improve the manner of forming and/or securing an electrical connector to an electric box by a snap fit action.
An object of this invention is to provide an electrical connector with a frustro-conically shaped retaining ring having integrally formed locking tangs and electrical grounding tangs.
Another object of this invention is to provide for an electrical connector assembly that includes an electrical connector body having an outlet end portion having a complementary frustro-conical retaining ring that is readily fitted to and retained on the outlet end portion of the connector body.
Another object is to provide a connector assembly comprising a connector body having an outlet portion free of any retaining flanges and an associated snap fit retainer ring circumscribing the outlet end portion.
Another object is to provide a retaining ring having a face portion with outwardly flaring circumscribing arms or sides having locking and grounding tangs that are readily formed out of a surface of the respective arms or side.
Another object is to provide a retaining ring having a frustro-conical shape with a first series of tangs for securing the retaining ring relative to an electrical box and a second series of tangs for effecting a positive electrical ground with an associated electrical box when fitted onto the end of a connector body.
Another object is to provide a frustro-conically shaped retaining ring that can be readily formed from a blank of spring steel.
Another object is to provide or an electrical connector assembly that is relatively simple to fabricate and positive in operation.
The foregoing objects and other features and advantages are attained by an electrical connector assembly that includes a connector body having an inlet end portion for receiving an electrical conductor and an outlet portion which is adapted to be inserted through a knockout hole of an electric box, e.g. an electric outlet box or the like. A radially outwardly extending flange circumscribes an intermediate portion of the connector body to function as a stop to limit the insertion of the outlet end portion of the connector body through the knockout hole of an electric box. The outlet end portion may be provided with an outer surface that converges or tapers inwardly toward the outlet opening thereof. Formed on the surface of the outlet end portion are one or more retaining lugs, which may be circumferentially spaced about the outlet end portion. A frustro-conically shaped snap ring is fitted onto the outlet end portion.
In accordance with this invention, the retaining ring, which is initially formed from a blank of sheet material having a cruciform shape, has a face portion with a central opening wherein the radiating arms of the cruciform blank are disposed about the face portion to define a frustro-conical ring. The ring so formed is provided with a blanked out or die cut tangs to define locking tangs and grounding tangs. The frustro-conical ring so formed also has a slot adapted to receive the retaining lug when the retaining ring is fitted onto the outlet end portion of the connector body so that the free ends of the ring engage the inner periphery of the knockout hole of an electric box for electrical continuity and grounding.
To form the retaining ring, the cruciform arms are arranged to be folded relative to the front or face forming portion of the blank provided with a central opening to define a unitary frustro-conically shaped cup-like member to compliment or be fitted to the outlet end portion of the connector body. The retaining ring thus formed is fitted over or onto the outlet end portion whereby the retaining slot formed in the ring of arms is adapted to receive the complementary retaining lug formed on the surface of the outlet end portion for retaining the ring on the outlet end portion of the connector body.
With the construction described, the connector assembly can be readily inserted through the knockout opening of an electric box wherein the locking tangs will spring outwardly to lock the connector assembly to the electric box with the grounding tangs or free ends of the arms being biased or urged against the internal periphery of the knockout hole to effect a positive electric ground, due to the inherent resiliency of the respective tangs and the material from which they are formed.
Referring to the drawings, there is shown in
As shown in
The connector assembly 10 also includes a snap fit retaining ring 18. In accordance with this invention, the retaining ring 18 is integrally formed from a blank 19 of spring steel material. As best seen in
As illustrated in
In forming the retaining ring 18 from blank 19, the respective arms AA and BB are subjected to a series of progressive bending dies which will gradually bend the respective arms relative about a foldline f, which defines the face or front portion 20, whereby the arms AA and BB form a cup having circumscribing frustro-conical or outwardly flaring sides to define a ring which complements the conical surface S of the outlet end portion 11B, as seen in FIG. 1. In doing so, the locking tangs 22 are outwardly cantileverly bent or displaced relative to the surface of the ring at a slightly greater outwardly angle or slope than the adjacent grounding tangs 23 and the slope of arms AA. With the retaining ring so formed, it can be readily fitted onto the outlet end portion 11B whereby the inherent resiliency of the arms AA will cause the retainer slots 22 to snap fit onto the retaining lug 17 when slots 21 are placed in alignment with lugs 17. The arrangement is such that the retainer ring 18 will be firmly and positively secured to the outlet end portion 11B as seen in FIG. 8. Yet, due to the inherent resiliency of the material of the retaining ring 18, it can be easily detached from the outlet end portion 11B when removal is desired, without destroying the ring 18 by lifting arms AA free of the retaining lugs 17.
With the retainer ring 18 properly secured to the outlet end 11B of the connector body 11, the connector assembly 10 can be readily secured to an electric box 10 by simply aligning the assembly 10 with a knockout hole 14, as best seen in
It will be understood that the wire conductor 25 may be secured to the connector assembly 10 either before or after the assembly 10 has been secured to the electric box 15. In the illustrated embodiment, the conductor wire 25 is simply inserted into the inlet end portion 11A and secured in position by a suitable securing means. In the illustrated embodiment, the securing means is illustrated as a set screw 26. However, it will be understood that other conventional forms of securing means may be used, than the set screw 26 illustrated.
From the foregoing, it will be apparent that the disclosed connector assembly is quite novel and simple in construction. The snap fit retaining ring 18 can be simply formed from a cruciform shaped blank 19 whereby the opposed radially extending arms AA and BB can be readily formed into a cup having a generally frustro-conically shaped sidewalls complementing the slope of the outlet end portion 11A, and whereby the retainer ring 18 can be readily secured to the connector body simply by the inter-engagement of slots 21 with its complementary lugs 17.
In the assembled position, the retainer ring 18 is positively secured to the connector body in a manner to prohibit any unintentional separation. Also the tangs 22, 23, which are formed integral with ring 18, are shaped and formed so that the locking tangs 22 secure the assembly 10 to an electric box 15 while the grounding tangs 23 ensure a positive electrical ground of the assembly 10 with the associated electric box 15.
While the present invention has been described with respect to a particular embodiment, it will be understood that various modifications may be made without departing from the spirit or scope of the invention.
This application discloses a further advancement in the field of electrical connector assemblies having a snap fit retaining ring circumscribing the outlet end of a connector body for effecting a snap fit connection to an electrical box of the types described in the co-pending application Ser. No. 10/283,978 filed Oct. 20, 2002 for Snap Fitting Electrical Connector; co-pending application Ser. No. 10/790,283 filed Mar. 1, 2004 for Snap Fitting Electrical Connector; and in a co-pending Provisional Application Ser. No. 60/587,121 filed Jul. 12, 2004, which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1483218 | Fahnestock | Feb 1924 | A |
1725883 | Recker | Aug 1929 | A |
1830250 | Tiefenbacher | Nov 1931 | A |
2156003 | Tinnerman | Apr 1939 | A |
2160353 | Conners | May 1939 | A |
2445663 | Peters | Jul 1948 | A |
2744769 | Roeder et al. | May 1956 | A |
2823932 | Schigut | Feb 1958 | A |
3183297 | Curtiss | May 1965 | A |
3436105 | Miklya | Apr 1969 | A |
3544705 | Winston | Dec 1970 | A |
3631738 | Harper | Jan 1972 | A |
3788582 | Swanquist | Jan 1974 | A |
3814467 | Van Buren, Jr. | Jun 1974 | A |
3858151 | Paskert | Dec 1974 | A |
3993333 | Biswas | Nov 1976 | A |
4012578 | Moran et al. | Mar 1977 | A |
4021604 | Dola et al. | May 1977 | A |
4032178 | Neuroth | Jun 1977 | A |
4248459 | Pate et al. | Feb 1981 | A |
4361302 | Lass | Nov 1982 | A |
4468535 | Law | Aug 1984 | A |
4619332 | Sheehan | Oct 1986 | A |
4621166 | Neuroth | Nov 1986 | A |
4626620 | Plyler | Dec 1986 | A |
4657212 | Gilmore et al. | Apr 1987 | A |
4711472 | Schnell | Dec 1987 | A |
4773280 | Baumgarten | Sep 1988 | A |
4880387 | Stikeleather et al. | Nov 1989 | A |
4981310 | Belisaire | Jan 1991 | A |
4990721 | Sheehan | Feb 1991 | A |
5132493 | Sheehan | Jul 1992 | A |
5171164 | O'Neil et al. | Dec 1992 | A |
5189258 | Pratesi | Feb 1993 | A |
5266050 | O'Neil et al. | Nov 1993 | A |
5342994 | Pratesi | Aug 1994 | A |
6380483 | Blake | Apr 2002 | B1 |
6444907 | Kiely | Sep 2002 | B1 |
6476322 | Dunne et al. | Nov 2002 | B1 |
6768057 | Blake | Jul 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
60587121 | Jul 2004 | US |