1. Field of the Invention
The present invention relates to an electrical connector, and particularly to the electrical connector having grounding plates with latching hooks to be pre-assembled with the terminal module before the final insert-molding process for forming the complete product.
2. Description of Related Art
The Chinese Utility Patent No. CN203942066 U discloses a receptacle connector and a plug connector with dual orientations mating, wherein the receptacle connector forms firstly the upper terminal module via a first step insert-molding process and the lower terminal module as well, and further sandwich a shielding plate therebetween to apply a second step insert-molding process for forming a final molded part. Lastly, a pair of grounding plates are assembled upon the insulative housing to finalize the terminal module. Notably, one potential problem is regarding the rigidity of the whole connector. Also, the ground plates successively assembled upon the terminal module after the terminal module is insert-molded, may affect the appearance of the terminal module.
Hence, an electrical connector including an improved structure is necessary.
Accordingly, an object of the present invention is to provide an electrical connector overcoming the aforementioned shortcomings, and method of making the same with the improved structure.
To achieve the above object, an electrical connector includes a terminal module unit with contacts and grounding plates thereof. The terminal module unit includes an insulative base and an insulative mating tongue forwardly extending therefrom. The mating tongue forms opposite mating surfaces. The contacts includes the contacting sections on the mating surfaces and the connecting legs. The mating tongue includes a root section adjacent to the base. The grounding plate unit covers the root section in an embedded manner. The grounding plate includes a planar body exposed upon the mating surface, and a pair of fixing side arms extending from two opposite ends of the planar body and equipped with corresponding latching hooks to secure to the semi-finished root section before the final insert-molding process is applied. Compared with the prior method, the latching hooks of the grounding plates may reliably secure the grounding plates in position during the final/second step insert-molding process, thus avoiding improper displacement of the grounding plates with regard to the semi-finished root section and assuring the true position of the final product.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
The terminal module unit 10 is equipped with contacts 20, the grounding plates 30 and the shielding plate 40. The contacts 20 include the contacting section 21 exposed upon the mating surfaces 121 and the legs 22. The mating tongue 12 forms a root section 122 adjacent to the base 11. The grounding plate (unit) 30 covers the root section 122 and includes a planar body 31 exposed upon the mating surfaces 121, and a pair of fixing side arms 32 embedded within the root section 122, wherein the fixing side arm 32 further includes a latching hook 33 secured to the terminal module unit 10 before the insulator 13 is injected, via a second step insert-molding process, upon the semi-finished terminal module as shown in
The terminal module unit 10 includes an upper terminal module 14, a lower terminal module 15 and a metallic shielding plate 40 sandwiched therebetween. As noted, similar to the previous designs filed by the same applicant, the upper terminal module 14 and the lower terminal module have corresponding posts and receiving holes for interengagement therebetween to have the upper terminal module and the lower terminal module fixed to each other with the shielding plate 40 sandwiched therebetween for forming a pre-assembled unit before the second step insert-molding process. The upper terminal module 14 includes an upper insulative body 141 and the upper contacts 20a embedded therein, the lower terminal module 15 includes a lower insulative body 151 and the lower contacts embedded therein. The grounding plate (unit) 30 include an upper grounding plate 30a and a lower grounding plate 30b. The lower insulative body 151 forms a lower protrusion 152 for engagement with the latching hook 33a of the upper grounding plate 30a; the upper insulative body 141 forms an upper protrusion 142 for engagement with the latching hook 33b. The upper protrusion 142 forms a downward guiding surface 1421 toward the lower insulative body 151; the lower protrusion 152 forms an upward guiding surface 1521 toward the upper insulative body 142. The upper insulative body 141 and the lower insulative body 151 form minor posts (not clearly shown) on rear sides, corresponding to the notches 312 of the grounding plate 30 (later illustrated) for temporarily holding the grounding plate 30 in position with regard to the upper insulative body 141 and the lower insulative body 151. After the upper terminal module 14 and the lower terminal module 15 and the shielding plate 40 are pre-assembled together, the upper grounding plate 30a is positioned upon the upper insulative body 141 with the latching hook 33a of the upper grounding plate 30a moving along the upward guiding surface 1521 and locked with the lower protrusion 152, and the lower grounding plate 30b is positioned upon the lower insulative body 151 with the latching hook 33b of the lower grounding plate 30b moving along downward guiding surface 1421 and locked with the upper protrusion 142, thus pre-assembling the upper grounding plate 30a and the lower grounding plate 30b upon the upper insulative body 141 and the lower insulative body 151. In this embodiment, the dimension of the upper protrusion 142 and the lower protrusion 152 is 0.325 mm The planar body 31 of the grounding plate 30 includes a front edge region 311 with notches 312 which receivably engage the corresponding aforementioned posts (not shown) and are further filled with the insulator 13 so as to retain the grounding plate 30 in position. The grounding plate 30 includes an extending portion 34 abuts against the upper insulative body 141 and the lower insulative body 151. Notably, the fixing side arms 32 do not contact the shielding plate 40 or the contacts 20. Finally, via a second step insert-molding process, the insulator 13 is applied upon the pre-assembled upper terminal module 14, the lower terminal module 15, the shielding plate 40 therebetween, and the upper grounding plate 30a attached upon the upper insulative body 141 and the lower grounding plate 30b attached upon the lower insulative body 151, including an inside and an outside. Therefore, the complete mating tongue 12 and the vertical section 111 of the base 11 are formed. Notably, the extending portion are embedded within the terminal module unit 10 in a coplanar manner.
The shielding plate 40 is located between the upper contacts 20a and the lower contacts 20b and includes a locking side edge 41 beyond the mating tongue 12, a pair of lateral sections 42 with mounting legs 43 located by two sides of the legs of the upper contacts 20a and the lower contacts 20b.
In this embodiment, the latching hook 33a of the upper grounding plate 30a is an opening within a confined structure while the latching hook 33b of the lower grounding plate 30b is of an L-shape and the L-shaped latching hooks 33b of the lower grounding plate 30b are directed in two opposite orientations in the front-to-back direction. On the other hand, the latching hook of the upper grounding plate and the latching hook of the lower grounding plate are directed in two opposite orientations in the front-to-back direction too.
While a preferred embodiment in accordance with the present invention has been shown and described, equivalent modifications and changes known to persons skilled in the art according to the spirit of the present invention are considered within the scope of the present invention as described in the appended claims. Understandably, the feature of the invention is to provide the temporary retention between the upper/lower grounding plate and the upper/lower insulative body before the second step insert-molding process for resisting the high pressure during injection molding process and assuring the correct position of the upper/lower grounding plate upon the upper/lower insulative body after the second step insert-molding process.
Number | Date | Country | Kind |
---|---|---|---|
201520086514.3 | Feb 2015 | CN | national |