1. Field of the Invention
The present invention relates to an electrical connector, and more particularly to an electrical connector having improved contacts arrangement.
2. Description of Related Art
Universal Serial BUS (USB) is a widely used input/output interface adapted for many electronic devices, such as personal computers and related peripherals. Nowadays, USB-IF has published several specification editions for USB, and transmitting rate of USB has become higher and higher. As electronic industry develops, higher transmitting rate of USB based connection accessory is needed.
A USB 3.0 specification over USB 2.0 has been adopted for transmitting high speed data. A USB 3.0 connector has five additional contacts for high speed signal transmission. A USB 3.0 connector of Powered-B type has two lateral contacts, one of the two lateral contacts being a power contact, and the other one being a ground contact. The power contact can supply power for peripheral equipment connected with the USB 3.0 connector of Powered-B type, without the need of additional power supply. However, some electronic devices, such as game consoles, require a large current flow, making the power supply system of the electronic device unstable.
Hence, an electrical connector with improved contacts is desired to overcome the above problems.
According to one aspect of the present invention, an electrical connector comprises: an insulative housing defining a receiving space, a plurality of contacts retained in the insulative housing, a cable electrically connected with the contacts, and a shielding member enclosing on the insulative housing to form a cavity. The contacts comprise a set of first contacts and a set of second contacts, each of the first and second contacts having a contacting portion and a tail portion. The cavity has a smaller length than the receiving space along a transverse direction, and the cavity is stacked on one side of the receiving space along an up-to-down direction, the cavity has a lateral boundary coplanar with the receiving space, the second contacts are received in the receiving space, the first contacts are retained in the cavity to transmitting high speed signal.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known circuits have been shown in block diagram form in order not to obscure the present invention in unnecessary detail. For the most part, details concerning timing considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present invention and are within the skills of persons of ordinary skill in the relevant art.
Referring to
Referring to
The extension portion 12 is defined on one side of the main portion 11 along a transverse direction, thus the extension portion 12 together with the main portion 11 are forming an L-shaped configuration. The extension portion 12 has a smaller height than the main portion 11 along a vertical direction. Simultaneously, the extension portion 12 has a dent 121 depressed downwards from an upper surface thereof, and the dent 121 is on a front segment of the extension portion 12. The extension portion 12 defines a plurality of slots 122 extending along the mating direction, front parts of the slots 122 are arranged in the dent 121 and communicated with an exterior in the vertical direction.
The first contacts 2 include two pairs of differential contacts and a grounding contact for transmitting high speed signal, the arrangement of the first contacts 2 is in accordance with USB 3.0 standard. The grounding contact is located between the two pairs of differential contacts to suppress cross-talk. Each first contact 2 comprises a resilient contacting portion 21, a tail portion 23, and a connecting portion 22 connecting the contacting portion 21 with the tail portion 23. Tail portions 23 of the first contacts 2 is arranged on a first level along the horizontal direction, two outer pairs of tail portions 23 are deflecting outwardly relative to the tail portion of the middle grounding contact, thus to increase the distance between the two neighboring tail portions 23. The first contacts 2 are received in the corresponding slots 122 of the extension portion 12.
Each of the second contacts 3 includes a stiff contacting portion 31, a retaining portion 32 extending backwards from corresponding contacting portion 31, and a tail portion 33 on a back end thereof. Each contacting portion 31 has a tapered end portion 311 on a front end thereof, a bending portion 34 is defined between the retaining portion 32 with the tail portion 33. The second contacts 3 are labeled as 3a to 3h in sequence, the contacting portions 31 of the second contacts 3 are arranged in two horizontal rows, and tail portions 33 of the second contacts 3 are arranged on a second level along the horizontal direction. The second contacts 3 with upper contacting portions 31 are labeled as 3a, 3b, 3c, 3d from left to right, and comprise a power contact 3a, a negative signal contact 3b, a positive signal contact 3c, and a grounding contact 3d. The second contacts 3 with lower contacting portions 31 are labeled as 3e, 3f, 3g, 3h along a right to left direction, and comprise a DPWR (Power provided by device) contact 3e, a pair of grounding contacts 3f, 3g (Ground return to DPWR) sharing a common tail portion, and a spare contact 3h. The pair of grounding contacts 3f, 3g are linked together with each other by a conjoining portion 35 connecting two bending portions 34 of the two contacts.
The spacer 4 is assembled to the back end surface of the insulative housing 1, and comprises a front engaging portion 41 and a back supporting portion 42. The engaging portion 41 defines a pair of holes (not labeled) in a front surface thereof for retaining the corresponding positioning posts 13. The supporting portion 42 defines a plurality of grooves 421 on a top surface and a bottom surface thereof, to receive corresponding tail portions 23, 33. After the first contacts 2 and the second contacts 3 assembled to the insulative housing 1, tail portions 23, 33 are exposed beyond the back end surface of the insulative housing 1 and inserted into the grooves 421 of the spacer 4. The cable 6 is electrically connected with the first and the second contacts 2, 3.
The shielding member 5 is made of metallic material, and includes a first shell 51 and a second shell 52 cooperated with each other. The second shell 52 is stamped from a unitary one-piece metal sheet, and comprises a tube portion 520 enclosing the main portion 11 and a drawer portion 521 extending backwardly from the tube portion 520 for latching with the first shell 51. The tube portion 520 has an L-shaped cross-section view, and the tube portion 520 has two different heights along the transverse direction, thus to form a depression 522. The first shell 51 has a pair of resilient tabs 511 on a front end thereof, and the pair of resilient tabs 511 are located on one side corresponding to the extension portion 12 of the insulative housing 1, a shielding sheet 512 is defined on another side of the first shell 51.
The first contacts 2 are assembled in the corresponding slots 122 of the insulative housing 1, the second contacts 3 are assembled in the corresponding passageways 112 of the insulative housing 1. The contacting portions 31 of the second contacts 3 are divided into two groups on different horizontal levels, and each group of the second contacts 3 at least has one contacting portion 31 closer to a front end of the insulative housing 1 than others.
The spacer 4 is attached to the back end surface of the insulative housing 1, the positioning posts 13 of the insulative housing 1 are inserted into the corresponding holes of the spacer 4. Then the insulative housing 1 is assembled to the second shell 52, a cavity 120 is formed by the extension portion 12 of the insulative housing 1 and an upper wall of the second shell 52, and the cavity 120 is located above on one side of the receiving space 110, the cavity 120 has a smaller length than the receiving space 110 along the transverse direction, the cavity 120 confined between opposite two side walls (not labeled) in the transverse direction and has a lateral boundary on the outer side wall along the vertical direction, and the lateral boundary is coplanar with a same side boundary of the receiving space 120. The first contacts 2 are arranged in the cavity 120, and the second contacts 3 are placed in the receiving space 110. Understandably, the opposite side walls by two sides of the cavity 120 may protect the resilient first contacting portions therebetween in the transverse direction. The first shell 51 is assembled to the drawer portion 521 of the second shell 52, the inner insulator 7 is molded on rear segments of the first and second shell 51, 52, and enclosed on a front part of the cable 6. The resilient tabs 511 of the first shell 51 are inserted apertures (not labeled) of the second shell 52. The shielding sheet 512 of the first shell 51 is bent down from the front end of the first shell 51, and accommodated in the depression 522 of the second shell 52 along the vertical direction.
Referring to
The second contacts 2 of the present invention can transmit larger current, such as can work normally in an environment of 9 volts to ensure system stability.
It is to be understood, however, that even though numerous, characteristics and advantages of the present invention have been set fourth in the foregoing description, together with details of the structure and function of the invention, the disclosed is illustrative only, and changes may be made in detail, especially in matters of number, shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2013 2 0183188 | Apr 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7104842 | Huang | Sep 2006 | B1 |
7559805 | Yi et al. | Jul 2009 | B1 |
7670181 | Tu | Mar 2010 | B2 |
8011968 | Lai | Sep 2011 | B2 |
8079854 | He et al. | Dec 2011 | B2 |
8100725 | Su | Jan 2012 | B2 |
8113882 | Chen | Feb 2012 | B1 |
8246388 | Chen | Aug 2012 | B2 |
8292637 | Wu | Oct 2012 | B2 |
8333616 | Su | Dec 2012 | B2 |
8517766 | Golko | Aug 2013 | B2 |
20100093217 | Shi | Apr 2010 | A1 |
20100248537 | Zhou | Sep 2010 | A1 |
20110028046 | Wang | Feb 2011 | A1 |
20110034080 | Su | Feb 2011 | A1 |
20110151716 | Kondo | Jun 2011 | A1 |
20110201215 | Matsubara | Aug 2011 | A1 |
20120028495 | Su | Feb 2012 | A1 |
20120171903 | Wang | Jul 2012 | A1 |
20120214350 | Wu | Aug 2012 | A1 |
20140213109 | Wu | Jul 2014 | A1 |
20150050836 | Wu | Feb 2015 | A1 |
20150056839 | Zhang | Feb 2015 | A1 |
20150068803 | Wu | Mar 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20140308848 A1 | Oct 2014 | US |