1. Field of the Invention
The present invention is generally related to the art of electrical connectors, and more particularly, to an electrical connector which is used to connect a flexible printed circuit or a flexible flat cable with a printed circuit board.
2. Description of Related Art
A variety of flexible printed circuit connectors are widely used in electronic devices such as mobile phones, keyboards and fax machines. These flexible printed circuit connectors are provided for connecting flexible printed circuits with printed circuit boards. A conventional flexible printed circuit connector generally comprises an insulated housing, a plurality of electrical contacts received in the housing and a slider member movably mounted to the housing. When a flexible printed circuit is mounted into the housing, the slider member presses the flexible printed circuit against the electrical contacts firmly to achieve a reliable electrical connection therebetween.
U.S. Pat. No. 6,371,797 discloses a flexible printed circuit connector. FIG. 1 of U.S. Pat. No. 6,371,797 shows that a housing of the flexible printed circuit connector comprises a pair of arm receptacles extending from lateral ends thereof. Each of the arm receptacles defines a slot therein. A slider member includes a plate and a pair of latching arms formed on lateral ends of the plate. When the flexible printed circuit is not mounted to the housing, an inserting mouth is provided between the slider member and the housing, so the latching arms can move around in the arm receptacles freely. After the flexible printed circuit is mounted to the housing, the slider member presses the flexible printed circuit against electrical contacts firmly. Accordingly, a complete electrical connection between the flexible printed circuit and the flexible printed circuit connector is established. However, with the trend toward miniaturization of electronic devices, the width of the latching arms is relatively small, and the latching arms are not adequately intense to endure the force applied thereon by repeatedly inserting into and pulling out of the housing. Therefore, the latching arms are easily damaged in operation or other applications especially in sections thereof at which the latching arms are connected with the plate.
Hence, an improved flexible printed circuit connector is highly desired to overcome the aforementioned disadvantages of the prior art.
Accordingly, an object of the present invention is to provide a flexible printed circuit connector, which can provide adequate intensity to a slider member thereof.
In order to achieve the object set forth, an improved flexible printed circuit connector is provided. The flexible printed circuit connector comprises an insulated housing, a plurality of electrical contacts received in the housing and a slider member movably mounted to the housing. The housing comprises a mating surface and a pair of arm receptacles extending from lateral ends of the housing. The slider member comprises a flat plate, a pressing portion perpendicular to the flat plate and a pair of latching arms extending from lateral ends of the flat plate and lockable with the corresponding arm receptacles. Each of the latching arms is in wedge-shaped and has a latch at an end thereof for locking with corresponding arm receptacles.
Other objects, advantages and novel features of the present invention will be drawn from the following detailed description of a preferred embodiment of the present invention with attached drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
Referring to
The second housing portion 16 comprises a rectangular base 17 including a bottom surface 171, a second mounting surface 172 opposite to the bottom surface 171, a front surface 173 connecting the bottom surface 171 with the second mounting surface 172 and a rear surface 176 opposite to the front surface 173. A cavity (not labeled) is recessed from the bottom surface 171. A tongue portion 174 extends upwardly from the bottom of the cavity and defines a plurality of receiving grooves 175 at both sidewalls thereof for securing electrical contacts. The front surface 173 has a protrusion 18 for engaging with the first latch 141 of the first latch portion 14. A stop plate (not labeled) extends from the rear surface 176 and away from the bottom surface 171. A pair of recesses 19 are formed on a rear portion of the base 17 and are in communication with outer space. A rib 191 is formed on a surface of the recess 19 parallel to the rear surface 176 for locking with the corresponding second latch 151 of the second latch portion 15. The base 17 defines a retaining hole 177 respectively at lateral ends thereof for retaining the pulling member 4.
The slider member 3 has a fiat plate 30, a pressing portion 31 extending forward from and perpendicular to the plate 30 in a front-to-back direction (marked by coordinate Y) and a pair of latching arms 32 formed on lateral ends of the plate 30 in the lateral direction and extending along the same direction as the pressing portion 31. The plate 30 defines a first opening 302 and a second opening 301. The widths of the first opening 302 and the second opening 301 are respectively determined variably with the corresponding number and widths of the receiving channels 121 defined in the upper and lower sidewalls of the receiving space 12 of the first housing portion 10 for receiving a variety of the flexible printed circuits or flexible flat cables which have different widths. Each of the latching arms 32 comprises a pair of side surfaces 320 and an upper and a lower surfaces 321 which gradually incline toward each other so as to make the latching arms 32 in wedge-shaped. Thus, a root portion (not labeled) of each latching arm 32 joined with the plate 30 has a larger dimension than a distal end thereof in a vertical direction (marked by coordinate Z) perpendicular to the lateral direction and the front-to-back direction. In such a way, the latching arms 32 are strong enough on the root portions to prevent them from breaking from the plate 30, while are slim enough at the distal ends thereof to permit them move freely in the slots 132 and the gaps 131. Additionally, each latching arm 32 further comprises a projection 322 and a latch 323 extending outward from the side surface 320, and the projection 322 is arranged adjacent to the root portion while the latch 323 is arranged adjacent to the distal end.
Referring to
Referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2003 2 01198233 | Nov 2003 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4969838 | Himes et al. | Nov 1990 | A |
5370552 | Chishima et al. | Dec 1994 | A |
5549485 | Chishima et al. | Aug 1996 | A |
6371797 | Kikuchi et al. | Apr 2002 | B1 |
6551128 | Asai | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
D 1108294 | Mar 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050124210 A1 | Jun 2005 | US |