1. Field of the Invention
The present invention relates to an electrical connector assembly, and more particularly to an electrical connector with improvements to assembling.
2. Description of Related Art
Type C USB specification was issued on Aug. 11, 2014. The size of the receptacle connector is essentially small to replace the micro-USB connector while the number of the corresponding contacts is much more than that of micro-USB. On the other hand, all the contacts are arranged in two rows in a diagonally symmetrical manner for mating with the corresponding plug connector in a flippable manner, i.e., two orientations with the same effect. Anyhow, the traditional two stage insert-molding process as disclosed in US Pub. No. 2015/0222059 may disadvantageously have some manufacturing difficulties to remove the linking bridges between the neighboring contacts in the contact carrier for finalize the terminal module because of the existing insulator around those linking bridges.
A new structure of the receptacle connector is desired.
A receptacle connector for mating with the plug connector, includes a terminal unit, a metallic shield and a mating cavity surrounded by the metallic shield. The terminal unit includes a terminal module having a first insulator with a plurality of first contacts embedded therein via a first stage insert-molding process, a second insulator with a plurality of second contacts embedded therein via the similar first stage insert-molding process, a metallic shielding plate sandwiched between the first insulator and the second insulator, and an insulative tongue piece integrally formed with a combination of the first insulator, the second insulator and the shielding plate via a second stage insert-molding process. The first insulator includes a first front insulator and a first rear insulator spaced from each other while linked together by the corresponding first contacts; the second insulator includes a second front insulator and a second rear insulator spaced from each other while linked together by the corresponding second contacts. The linking bridges between every adjacent two contacts are located and also easily removed in the space between the first front insulator and the first rear insulator. It is also easy to inspect whether the linking bridges are completely removed from the corresponding contacts. The space is successively filled with the material of the tongue piece.
Referring to
The terminal unit 10 includes a terminal module 104 and an insulative tongue piece 40 integrally formed/filled upon/within the terminal module 104. The terminal module 104 includes a first/upper terminal module 60, a second/lower terminal module 70, a metallic shielding plate 50 sandwiched between the upper terminal module 60 and the lower terminal module 70, and the upper metallic grounding collar 80 and the lower metallic grounding collar 90 respectively located upon the upper terminal module 60 and the lower terminal module 70. The shielding plate 50 forms four through holes 51. The upper terminal module 60 includes a first insulator and a plurality of first/upper contacts 61 embedded within the first insulator via a (first stage) insert-molding process, and the lower terminal module 70 includes a second insulator and a plurality of second/lower contacts 71 embedded within the second insulator via another (first stage) insert-molding process. The first insulator includes a first front insulator 62 and a first rear insulator 63 spaced from each other in a front-to-back direction; the second insulator includes a second front insulator 72 and a second rear insulator 73 in a front-to-back direction. Correspondingly, the upper contact 61 has a first end region enclosed in the first front insulator 62, a second end region enclosed in the first rear insulator 63, and a first connection region 64 located between the first end region and the second end region and exposed to an exterior. Similarly, the lower contact 71 has a first end section enclosed in the second front insulator 72, a second end section enclosed in the second rear insulator 73, and a second connection section 74 located between the first end section and the second end section and exposed to the exterior. The first end region of the upper contact 61 is exposed upon the upper surface of the first front insulator 62, and the front end section of the lower contact 71 is exposed upon an undersurface of the second front insulator 72 so as to form a mating portion for mating with the plug connector. On the other hand, the second end region of the upper contact 61 and the second end section of the lower contact 71 extend out of the corresponding first rear insulator 63 and the second rear insulator 73 to form a mounting portion for soldering to a printed circuit board.
The first front insulator 62 includes a downwardly extending securing post 621 and a receiving hole 622 transversely aligned with each other; the first rear insulator 63 includes a downwardly extending securing post 631 and a receiving hole 632 transversely aligned with each other. The second front insulator 72 includes an upward extending securing post 721 and a receiving hole 722 transversely aligned with each other; the second rear insulator 73 includes an upwardly extending securing post 731 and a receiving hole 732 transversely aligned with each other. The securing post 621 and the securing post 631 extend through the corresponding through holes 51 in the shielding plate 5 to be received within the corresponding receiving hole 722 and the corresponding receiving hole 732, respectively. The securing post 721 and the securing post 731 extend through the corresponding through holes 51 to be received within the corresponding receiving hole 622 and the corresponding receiving hole 632, respectively. The upper terminal module 60 and the lower terminal module 70 are secured to each other.
The upper grounding collar 80 and the lower grounding collar 90 includes a first main body 81 and a second main body 91, and a first abutting plate 82 and a second abutting plate 92 respectively extending from the first main body 81 and the second main body 91, respectively. Each of the first abutting plate 82 and the second abutting plate 92 forms a plurality of transversely arranged spring tangs 102. A pair of first bent sections 83 extend downwardly from two opposite ends of the first main body 81; a pair of second bent sections 93 extend upwardly from two opposite ends of the second main body 91. The upper grounding collar 80 is downwardly assembled upon the first rear insulator 63 so as to shield the exposed first connection region 64. The first abutting plate 82 abuts against the first rear insulator 63. The lower grounding collar 90 is upwardly assembled to the second rear insulator 73 so as to shield the exposed second connection section 74. The second abutting plate 92 abuts against the second rear insulator 73. It is noted that the upper grounding collar 80 forms a pair of wings 88 interferentially received within the corresponding grooves 69 in the first rear insulator 63 so as to efficiently retain the upper grounding collar 80 to the first rear insulator 63. The lower grounding collar 90 and the second rear insulator 73 also have the similar structures for retention therebetween.
After assembling, the shielding plate 50, the upper terminal module 60, the lower terminal module 70, the upper grounding collar 80 and the lower grounding collar 90 commonly form a base. The insulative tongue piece 40 is then successively filled within and upon such a base via a second stage insert-molding process so as to finalize the whole terminal unit 10 including the mating tongue 103. Furthermore, the spring tangs 102 contact the shield 20. Understandably, the space between the first front insulator 62 and the first rear insulator 63 is filled with material of the insulative tongue piece 40 during the second stage insert-molding process, and the space between the second front insulator 72 and the second rear insulator 73 is as well. On the other hand, such a space also may be optionally partially filled instead of fully for impedance consideration.
Notably, the upper contacts 61 are originally connected with one another in the transverse direction via (transversely extending) linking bridges 644 each between every two neighboring upper contacts 61 for assuring true positions of the upper contacts 61 after the first stage insert-molding process. Such linking bridges 644 are located at the first connecting region 64 with the mark 640 left after removing. Understandably, in the aforementioned U.S. Publication No. 2015/0222059, the upper insulator is of one piece and the linking bridges are embedded within the formed insulator while being exposed via the corresponding through holes aligned therewith in the vertical direction. Anyhow, it is hard to remove the linking bridges only via such a through holes structure aligned with the linking bridges. Differently, in the invention, the upper/first insulator is divided into the first front insulator 62 and the first rear insulator 63 to fully expose the middle connection region 64 where the linking bridges are connected. Therefore, advantageously it is relatively easy to remove the linking bridges after the first stage insert-molding process is complete and before the second stage insert-molding is ready. The lower contacts 71 and the second/lower insulator (including the spaced second front insulator 72 and second rear insulator 73) are also arranged similarly.
Number | Date | Country | Kind |
---|---|---|---|
2014 2 0695455 U | Nov 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20110028047 | Wang | Feb 2011 | A1 |
20110256764 | Wu | Oct 2011 | A1 |
20120202363 | McNamara | Aug 2012 | A1 |
20120276777 | Lv | Nov 2012 | A1 |
20130040492 | Wu | Feb 2013 | A1 |
20140073184 | Zhao | Mar 2014 | A1 |
20150111433 | Hou | Apr 2015 | A1 |
20150171562 | Gao | Jun 2015 | A1 |
20150222059 | Little et al. | Aug 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160141806 A1 | May 2016 | US |