BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is an assembled perspective view of an electrical connector in accordance with the present invention;
FIG. 2 is an exploded perspective view of the electrical connector shown in FIG. 1;
FIG. 3 is an FPC used for being inserted into the electrical connector shown in FIG. 1;
FIG. 4 is a cross-sectional view of the electrical connector shown in FIG. 1 taken along line 3-3, wherein a pressing member is in an opened position;
FIG. 5 is a similar view of FIG. 4, wherein the pressing member is in a closed position;
FIG. 6 is a perspective view of a portion of the electrical connector, intending to show the engagement between a fixed terminal and a housing.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made to the drawing figures to describe the preferred embodiment of the present invention in detail.
Referring to FIG. 1 and FIG. 2, an electrical connector 100 in accordance with the present invention is provided. The connector 100 includes a lengthwise insulating housing 1 comprising an upper wall, a lower wall and a receiving cavity 10 between the upper wall and the lower wall. The upper wall and the lower wall respectively define a plurality of terminal grooves 12, 13. A plurality of conductive terminals 2 is retained in the terminal grooves 12, 13. Each terminal 2 comprises a 1 base section 21, a pair of solder portion 22 extending from two ends of the base section 21 to be soldered on the printed circuit broad (PCB), a fixed arm 23 extending forward from the base section 21 to be retained in terminal groove 12 defined by the upper wall, a first resilient arm 24 extending forward substantially parallel to the fixed arm 23, and a second resilient arm 25 branching from a root portion of the fixed arm 23 and extending forward parallel to the first resilient arm 24. The first and second resilient arms 24, 25 of each terminal 2 are jointly received in one terminal groove 13 defined by the lower wall. Each of the resilient arms 24, 25 has a contact portion 241, 251 faced to the fixed arm 23 and exposed to the receiving cavity 10. As shown in FIG. 4, the conductive terminals 2 are inserted into the housing 1 from back along a front-to-back direction. For the first resilient arm 24 extends further than the second resilient arm 25 along the front-to-back direction, the contact portion 241 is in front of the contact portion 251. In order to receive the longer resilient arms 24, the housing 1 further has an extended wall 11 extending forward from the lower wall and beyond the upper wall.
Electrical connector 100 further has a pair of fixed terminals 3. In order to accommodate said fixed terminals 3, the lower wall of the housing 1 defines two channels 14 which are located beside the extended wall 11.
As shown in FIGS. 2 and 4, the housing 1 has a pair of lateral wall for connecting lengthwise ends of the upper and lower walls together. Each lateral wall has a passageway 15 extending along the front-to-back direction through a rear end thereof and a blocking portion 151 at a front end of the passageway 15. For firmly retaining an FPC 5 (shown in FIG. 3) in the housing 1, a pressing member 4 is provided to be movable between an opened position (shown in FIG. 4) and a closed position (shown in FIG. 5). The pressing member 4 has a rectangular base plate 40, a tongue plate 41 extending from the base plate 40 and defining a slanting surface at its distal end for easily inserted in the receiving cavity 10, and a pair of latching beams 42 extending from lengthwise ends of the base plate 40 along a same direction of the tongue plate 41 to slide in the corresponding passageways 15. Each latching beam 42 has a latch 421 at its distal end which is bent toward the tongue plate 41 for being blocked by the blocking portion 151 to prevent the pressing member 4 breaking off the housing 1 when the pressing member is in the opened position.
Referring to FIG. 3, the FPC 5 comprises a plurality of conductive pads 50 arranged side by side in a row at its one end for electrically contacting with the contact portions 241, 251 of the terminals 2, and a pair of projections 51 extending outward from lateral sides of the end provided with the conductive pads 50.
Referring to FIGS. 4 and 5, when assembling FPC 5, the FPC 5 pass through an opening 45 of the base plate 40 of the pressing member 4 to be received in the receiving cavity 10 of the housing 1, and then the pressing member 4 is shifted from the opened position toward the closed position. The tongue plate 41 of the pressing member 4 urges the FPC 5 to move toward the contact portions 241, 251 so that the conductive pads 50 can electrically contact with the corresponding contact portions 241, 251 of the terminals 2. It is noted that the contact portion 241 and the contact portion 251 of one single terminal 2 electrically contact with the identical conductive pad 50 of the FPC. Therefore, even if one of the contact portions 241, 251 cannot fully achieve an electrical connection with the conductive pad 50 by accident, yet the other still can fully achieve an electrical connection. Additionally, if the two contact portions 241, 251 both can fully, electrically contact with the conductive pad 50, a parallel circuit is established thereby resulting the electric resistance is reduced, and the electric performance of the electrical connector is improved accordingly.
Referring to FIG. 6, a plurality of tubers 141 project from the lower wall of the housing 1 to be located beside the channels 14. The tubers 141 cooperate with locking portions 32 provided by resilient arms 31 of the fixed terminals 31 to engage with the projections 51 of the FPC 5 for prevent the FPC 5 being pulled out of the housing 1 without requirement.
The present invention is not limited to the electrical connector 100 mentioned above. This disclosure is illustrative only, change may be made in detail, especially in matter of shapes, size, and arrangement of parts within the principles of the invention. For example, the second resilient arm 25 can be arranged to extend from the base section but not branches from the fixed arm 23.