This invention relates generally to an electrical connector that has right angle terminal pins for attachment to a printed circuit board and to a process for making such an electrical connector.
An electrical connector and process in which a plurality of terminal pins are disposed in a connector body that has a tail guard for projecting tail portions of the terminal pins. The tail guard is shaped to accommodate in situ over bending of projecting tail portions of the terminal pins.
Referring now to the drawing, electronic assembly 10 comprises a two piece die cast aluminum housing 12 having an upper housing part or cover 13 upon which are mounted two identical electrical connectors 14 and 16, each of which illustrate an identical preferred embodiment of the invention. The typical electrical connector 14 may be used to connect a printed circuit board 18 inside housing 12 with a wiring harness (not shown) which typically includes an electrical connector (not shown) that plugs into electrical connector 14.
Electrical connector 14 comprises a connector body 20, a pin block 22 that supports a plurality of insert molded terminal pins 24, a seal 26, a terminal stabilizer 28 and a pin alignment member 30.
Pin block 22 is a molded thermoplastic body that acts as an insulator to space terminal pins 24 and isolate the terminal pins 24 from each other electrically. Typically the terminal pins 24 are arranged in horizontal rows that are vertically spaced with the terminal pins 24 in each row being laterally spaced from each other. The embodiment illustrated in the drawing has four horizontal, vertically spaced rows of terminal pins 24. The terminal pins 24 are originally straight and arranged in a suitable fixture. The properly arranged terminal pins 24 are then insert molded in pin block 22 in a well know manner to produce a terminal block assembly 34 having contact portions 36 of the terminals pins 24 projecting out one end of the pin block 22 and tail portions 38 projecting out the opposite end of the pin block 22 as best shown in
The connector body 20 is a shell having a socket 40 at a forward end for receiving a mating connector on the end or a wiring harness (not shown). Connector body 20 includes an intermediate annular retainer section 42 for holding the pin block assembly 34 and a rearward tail guard 44 at the opposite end for protecting the projecting tail portions 38 of the terminal pins 24 in the pin block assembly 34. During manufacture, the terminal block assembly 34 is inserted into the intermediate retainer section 42 through the socket 40 and located by a flange 46 of pin block 22 that engages an internal shoulder of the connector body 20. The peripheral wall of pin block 22 may have an asymmetrical arrangement of longitudinal ribs that are received in matching slots in socket 40 to assure that the pin block assembly 34 is properly inserted into socket 40. This is a well known conventional orientation technique and consequently the longitudinal ribs and slots are not shown.
When properly located in the retainer section 42, withdrawal of the pin block assembly 34 out through the socket 40 is prevented by a friction fit of pin block 22 in retainer section 42. The peripheral wall of pin block 22 may have a plurality of shallow ribs (not shown) that are used to force fit pin block 22 in retainer section 42.
After the terminal block assembly 34 is assembled and held in the connector body 20, the projecting tail portions 38 shown in
Terminal pins 24 are made of a material, such as cartridge brass having a nickel underplate and a gold or lead free tin coating, that has spring back characteristics when tail portions 38 are permanently bent. Consequently the tail portions 38 are over bent, that is, the tail portions 38 are bent at a slightly acute angle that is more than a right angle, for instance at an angle of about 15 degrees. Consequently the tail portions 38 are disposed substantially at a right angle after the tail portions 38 are over bent and spring back. Over bending the tail portions 38 of the bottom three rows of terminal pins 24 in situ is usually not a problem because there is ample space for tooling to operate in the rearward tail guard 44 behind pin block assembly 22. However, the electrical connector 14 also provides ample space for over bending the projecting tail portions 38 of even the highest row of terminal pins 24 in situ, which in this particular instance is the fourth row of terminal pins 24.
The process for over bending the tail portions 38 in the highest row of terminal pins 24 is illustrated in
As indicated above, the tail portions 38 are initially bent up elastically to the inclined position shown in solid lines in
After the tail portions 38 are over bent by tool 52 and tool 52 is withdrawn, the over bent tail portions 38 spring back to substantially a right angle. Blade 46 is then withdrawn so that the elastically bent-up tail portions ahead of the bend are released and return to a horizontal position as shown in
Seal 26 is preferably formed in situ, that is, a suitable sealing material is dispensed and cured in place on the contact side of the pin block 22 after the terminal block assembly 34 is installed. Such a seal is particularly advantageous in the case of square terminal pins 24, such as those illustrated in
As indicated above, electrical connector 14 preferably includes a terminal stabilizer 28. Terminal stabilizer 28 has a flange 30 that is inserted into the socket 40 after the seal 26 is cured. Terminal stabilizer 28 includes a plurality of holes that receive the respective protruding contact portions 36 of the terminal pins 24 to align the contact portions 36 of the terminal pins 24 for proper mating engagement with female terminals carried by the mating electrical connector of a wiring harness (not shown). With the optional pin stabilizer 28 in place, electrical connector 14 is now ready for attachment to cover 13 of housing 12.
Connector body 20 has a peripheral mounting flange 56 that fits inside one of two openings 57 in cover 13, the openings 57 each being defined in part by trapezoidal side walls 58 and a raised back wall 59. Connector body 20 has a continuous groove 60 outside the peripheral mounting flange 56 for receiving an adhesive 61. Connector body 20 is attached to cover 13 filling groove 60 with an adhesive 61 and inserting mounting flange 56 into opening 57 of cover 13 so that the adhesive glues or bonds the connector body 20 to the portions of the aluminum die case cover 13 adjacent to the opening 57.
After connector body 20 is attached to cover 13, the vertical parts of the bent tail portions 38 of all the terminal pins 22 are inserted through holes in pin alignment member 32. The pin alignment member 32 is then pushed up into cover 13. The pin alignment member 32 includes a plurality of alignment features 53 (one shown) that engage alignment cavities 54 in cover 13 and a pair of latch arms 54 (one shown) that engage an internal latch shoulder of cover 13 to hold the pin alignment member 32 in the proper position in the cover 13 as shown in
It will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those described above, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the following claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
6116920 | Yu et al. | Sep 2000 | A |
6702593 | Ogawa | Mar 2004 | B2 |