Electrical connector with shield cap and shielded terminals

Information

  • Patent Grant
  • 9847607
  • Patent Number
    9,847,607
  • Date Filed
    Thursday, April 23, 2015
    9 years ago
  • Date Issued
    Tuesday, December 19, 2017
    7 years ago
Abstract
A shield cap is mounted to an electrical connector for reducing crosstalk between adjoining electrical connectors. The shield cap includes a body portion and opposite shield plates. The body portion is configured to engage the electrical connector and is formed from a non-conductive material. The opposite shield plates are connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector. The electrical connector includes a wire termination conductor configured to be connected to a wire conductor of a cable. The wire termination conductor is at least partially coated with a shielding layer.
Description
BACKGROUND

Electrical connectors, such as modular jacks and modular plugs, are commonly used in telecommunications systems. Such connectors may be used to provide interfaces between successive runs of cable in telecommunications systems and between cables and electronic devices. In the field of data communications, communications networks typically utilize techniques designed to maintain or improve the integrity of signals being transmitted via the network (“transmission signals”). To protect signal integrity, the communications networks should, at a minimum, satisfy compliance standards that are established by standards committees, such as the Institute of Electrical and Electronics Engineers (IEEE). The compliance standards help network designers provide communications networks that achieve at least minimum levels of signal integrity as well as some standard of compatibility.


To promote high circuit density, communications networks typically include a plurality of electrical connectors that bring transmission signals in close proximity to one another. For example, the contacts of multiple sets of jacks and plugs are positioned fairly closely to one another. However, such a high density configuration is particularly susceptible to alien crosstalk inference.


Alien crosstalk is electromagnetic noise that can occur in a cable that runs alongside one or more other signal-carrying cables or in a connector that is positioned proximate to another connector. The term “alien” arises from the fact that this form of crosstalk occurs between different cables in a bundle or different connectors in a group, rather than between individual wires or circuits within a single cable or connector. Alien crosstalk affects the performance of a communications system by reducing the signal-to-noise ratio.


Various arrangements are introduced to reduce alien crosstalk between adjacent connectors. One possible solution is to separate the cables and/or connectors from each other by a predetermined distance so that the likelihood of alien crosstalk is minimized. This solution, however, reduces the density of cables and/or connectors that may be used per unit of area.


The telecommunications industry is constantly striving toward larger signal frequency ranges. As transmission frequency ranges widen, crosstalk becomes more problematic. Thus, there is a need for further development of electrical connectors with high efficiency in reducing the crosstalk between adjacent connectors.


SUMMARY

This disclosure is generally directed to electrical connectors. In one possible configuration and by non-limiting example, the electrical connectors are jack assemblies configured to reduce crosstalk between adjacent electrical connectors. In another possible configuration and by non-limiting example, the electrical connectors include wire termination conductors with a shielding layer configured to reduce crosstalk between adjacent wire termination conductors and/or adjacent electrical connectors. Various aspects are described in this disclosure, which include, but are not limited to, the following aspects.


One aspect of the present disclosure relates to an electrical connector including a connector housing and a shield cap. The connector housing has front and rear ends and a cavity opened at the front end for receiving a plug. The connector further includes one or more insulation displacement contacts supported by the connector housing and extending from the connector housing at the rear end. The shield cap may be mounted to the connector housing at the rear end. The shield cap may include a body portion configured to engage the connector housing, and opposite shield plates connected to opposite sides of the body and configured to at least partially cover the insulation displacement contact.


Another aspect of the present disclosure is directed to a shield cap configured to be mounted to an electrical connector. The shield cap may include a body portion and opposite shield plates. The body portion is configured to engage the electrical connector. The body portion may be formed from a non-conductive material. The opposite shield plates may be connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector.


Still another aspect of the present disclosure relates to a jack assembly for terminating a plurality of line wires of a communications cable. The jack assembly may include a dielectric jack housing and a shield cap. The jack housing has front and rear ends, and includes a cavity opened at the front end for receiving a plug. The jack housing may further include a contact subassembly joined to the rear end. The contact subassembly may include a plurality of arms extending from the contact subassembly against the rear end of the jack housing and spaced part to define a plurality of conductor channels. A plurality of insulation displacement contacts are provided in the contact subassembly so that each insulation displacement contact is held within each of the plurality of conductor channels. The jack housing also includes a plurality of electrical contacts configured and positioned in the cavity for engaging corresponding contacts of the plug. The jack housing may include a circuit board configured to electrically connect the plurality of electrical contacts and the plurality of insulation displacement contacts. The shield cap is configured to be mounted to the jack housing at the rear end to cover at least partially the contact subassembly. The shield cap may include a body portion, a cable sleeve, opposite sidewalls, and opposite shield plates. The body portion has an inner surface and an outer surface and is made from a non-conductive material. The cable sleeve extends outwardly from the outer surface of the body and configured to receive a cable having a plurality of conductors. The cable is inserted through the cable sleeve so that each of the plurality of conductors of the cable is connected to each of the plurality of insulation displacement contacts. The opposite sidewalls may be configured to extend from the inner surface and have one or more latch projections configured to engage the jack housing. The opposite shield plates may be configured to extend from the inner surface so as to at least partially cover the contact subassembly. The opposite shield plates are made from a conductive material.


Still another aspect of the present disclosure relates to an electrical connector. The electrical connector includes a connector housing, an electrical contact, and a wire termination conductor. The connector housing has front and rear ends and receives a plug at the front end. The electrical contact engages a corresponding electrical contact of the plug. The wire termination conductor is connected to the electrical contact and extends from the connector housing at the rear end. The wire termination conductor is configured to be connected to a wire conductor of a cable. The wire termination conductor is at least partially coated with a shielding layer. The shielding layer is adapted for reducing crosstalk between adjacent electrical connectors, and between adjacent wire termination conductors.


Still another aspect of the present disclosure is a wire termination conductor used for an electrical connector. The wire termination conductor includes a support head supported by the electrical connector, and a wire engaging body extending from the electrical connector and connected to a wire conductor of a cable. The wire engaging body is at least partially coated with a shielding layer. The wire engaging body has a first surface, a second surface opposite to the first surface, and a third surface extending between the first and second surfaces. The wire contact portion may be provided on the third surface. The shielding layer may be coated on the first and second surfaces, but not on the third surface.


The shielding layer may include a first layer and a second layer formed above the second layer. The first layer may be formed with a dielectric material, and the second layer may be formed with a conductive material. The dielectric material may be a polymer. The conductive material may be a conductive ink, such as a silver ink.


Still another aspect of the present disclosure is directed to a method of forming a shielding layer on a wire termination conductor used for an electrical connector. The method may include forming a first layer on at least a portion of the wire termination conductor, and forming a second layer on at least a portion of the first layer. The first layer may include a dielectric material, and the second layer may include a conductive material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a rear perspective view of an exemplary electrical connector assembly.



FIG. 2 is a front perspective view of a jack assembly of FIG. 1 before a shield cap engages a contact sub-assembly.



FIG. 3 is a front perspective view of the contact subassembly of FIG. 2.



FIG. 4 is a perspective view of an exemplary shield cap of FIGS. 1 and 2.



FIG. 5 is an expanded view of the shield cap of FIG. 4.



FIG. 6 is a perspective view of an exemplary body portion of the shield cap of FIGS. 4 and 5.



FIG. 7 is a perspective view of exemplary shield plates overmolded to the body portion of FIG. 6.



FIG. 8 is an expanded view of another exemplary shield cap with an exemplary support bar.



FIGS. 9A and 9B are side views of a cross wall and a conductor channel, illustrating that the cross wall engages an insulated wire conductor into the conductor channel 169 and a corresponding insulation displacement contact.



FIG. 10A is a perspective view of exemplary electrical connector assemblies adjoined to one another in a high density configuration.



FIG. 10B is a top view of the electrical connector assemblies of FIG. 10B.



FIG. 11 is a rear perspective, exploded view of the electrical connector of FIG. 1.



FIG. 12 is a perspective view of exemplary components of the contact subassembly of FIG. 11.



FIG. 13 is a side view of exemplary components of the contact subassembly of FIG. 11.



FIG. 14A is a top view of an exemplary wire termination conductor.



FIG. 14B is a side view of the wire termination conductor of FIG. 14A.



FIG. 14C is a bottom view of the wire termination conductor of FIG. 14A.



FIG. 15 is a side view illustrating an example of forming a shielding layer on a wire termination conductor.





DETAILED DESCRIPTION


FIG. 1 is a rear perspective view of an exemplary electrical connector assembly 100. The connector assembly 100 includes a plug 106 and a jack assembly 108. The plug 106 is connected to the jack assembly 108 for transmitting high speed electronic signals between multi-conductor cable 102 and multi-conductor cable 104. In some example, the plug 106 is an RJ-45 type. However, the plug 106 can be of any type or variation. The multi-conductor cables 102 and 104 can be twisted-pair cables having a plurality of insulated wire conductors 190 (FIG. 2) running throughout the corresponding cable. In this disclosure, the term “conductive,” or other similar phrase, is used to refer to electrical conductivity, and thus can be interchangeably used with “electrically conductive.”


In some examples, the jack assembly 108 includes a jack housing 109, a contact subassembly 114, and a shield cap 116. The jack housing 109 has a front end 110 and a rear end 112. The plug 106 is received to the front end 110, and the contact subassembly 114 is coupled to the rear end 112. The shield cap 116 is connected to the jack housing 109 or the contact subassembly 114 and configured to at least partially cover the contact subassembly 114 and/or electrical components exposed therefrom. In other examples, the jack housing 109 and the contact subassembly 114 are integrally formed. It is noted that the electrical connector assembly 100 as shown in FIG. 1 is only a non-limiting example and many other variations and types of connectors or connector assemblies can be used in accordance with the principles of the present disclosure.


The jack housing 109 can be fabricated from a non-conductive material or dielectric material. In other examples, the jack housing 109 is made from a non-conductive material having conductive particles dispersed therein. The conductive particles form a conductive network that facilitates providing EMI/RFI shielding for the electrical connector assembly 100. As such, the jack housing 109 is adapted to avoid formation of a conductive path. More specifically, the jack housing 109 may be configured to avoid forming a conductive path with an electrical contact 134 (FIG. 2).


In some examples, the contact subassembly 114 is fabricated from a non-conductive material or dielectric material. In other examples, the contact subassembly 114 is made from a non-conductive material having conductive particles dispersed therein. The conductive particles form a conductive network that facilitates providing EMI/RFI shielding for the electrical connector assembly 100.


As discussed in further detail below, the shield cap 116 provides shield plates 215 and 217 (FIGS. 3 and 4) for reducing alien crosstalk between adjacent electrical connector assemblies. Examples of materials used to make the shield cap 116 are described below in further detail.



FIG. 2 is a front perspective view of the jack assembly 108 of FIG. 1 before the shield cap 116 engages the contact sub-assembly 114. As described above, the jack assembly 108 includes the jack housing 109, the contact subassembly 114, and the shield cap 116.


The jack housing 109 has a substantially rectangular shape and includes a front face 120, opposite sides 122 and 124, a top side 126, and a bottom side 128. The front face 120 is arranged at the front end 110 of the jack housing 109. The opposite sides 122 and 124, the top side 126, and the bottom side 128 extend between the front end 110 and the rear end 112 of the jack housing 109. The front face 120 forms an opening 130 that leads to a cavity 132 configured to receive the plug 106 (FIG. 1). The cavity 132 includes an array of electrical contacts 134 that extend through the jack housing 109 from the front end 110 to the rear end 112 and terminate at a corresponding wire termination conductor 180 (FIG. 3) on the contact subassembly 114. In this disclosure, the wire termination conductors 180 are depicted as insulation displacement contacts (IDC's) but could be other types of wire termination conductors such as wire wraps or pins. In certain examples, the arrangement of the electrical contacts 134 may be at least partially determined by industry standards, such as, but not limited to, International Electrotechnical Commission (IEC) 60603-7 or Electronics Industries Alliance/Telecommunications Industry Association (EIA/TIA)-568.


The contact subassembly 114 is configured to provide a plurality of insulation displacement contacts 180 that is electrically connected to a plurality of conductors 190 (FIG. 1) stripped at the end of the cable 102. The contact subassembly 114 is described in further detail with reference to FIG. 3.


The shield cap 116 operates to at least partially cover the contact subassembly 114 (and/or electrical components exposed therefrom) for crosstalk shielding and pass the cable 102 therethrough. In some examples, the shield cap 116 has a cable sleeve 118 extending axially in a rear direction. The cable sleeve 118 is configured to receive and provide strain relief for the cable 102 when the cable 102 is engaged with the contact sub-assembly 114. The cable sleeve 118 also operates as a bend limiter for the cable 102. In order to connect the cable 102 to the jack assembly 108, a stripped end of the cable 102 is first inserted through the cable sleeve 118 and advanced toward the contact subassembly 114. In some examples, the cable sleeve 118 is shaped as a truncated cone.



FIG. 3 is a front perspective view of the contact subassembly 114 of FIG. 2. The contact subassembly 114 includes a back covering 202 having an outer surface 204 and a covering edge 206 that defines a perimeter of the back covering 202. The back covering 202 encloses and holds a circuit board 262 (FIG. 11) within the jack housing 109. The circuit board 262 is configured to define circuit paths that extend from the plurality of electrical contacts 134 to the plurality of insulation displacement contacts 180, thereby electrically connecting the electrical contacts 134 and the insulation displacement contacts 180.


In some examples, the contact subassembly 114 includes a plurality of arms 152-161 that project axially outward away from the outer surface 204 of the contact subassembly 114, and thus from the rear end 112 of the jack housing 109. The plurality of arms 152-161 extend at an angle that is substantially perpendicular to the outer surface 204. The arms 152-161 can be integrally formed with the contact subassembly 114.


The plurality of arms 152-161 define a plurality of conductor channels 162-169 that is configured to accommodate the insulation displacement contacts 180 therein. In particular, the arms 152 and 153 define the conductor channel 162 therebetween; the arms 153 and 154 define the conductor channel 163 therebetween; the arms 154 and 155 define the conductor channel 164 therebetween; the arms 155 and 156 define the conductor channel 165 therebetween; the arms 157 and 158 define the conductor channel 166 therebetween; the arms 158 and 159 define the conductor channel 167 therebetween; the arms 159 and 160 define the conductor channel 168 therebetween; and the arms 160 and 161 define the conductor channel 169 therebetween.


The contact subassembly 114 includes a plurality of insulation displacement contacts (IDC's) 180 accommodated within the conductor channels 162-169, respectively. In particular, each IDC 180 has a slot 181 configured to hold a conductor 190 (FIG. 2) when the electrical connector assembly 100 is in operation. The slot 181 of each IDC 180 is oriented and rests within the corresponding conductor channel 162-169 so that the slot 181 can receive the conductor 190.


For example, the arms 152 and 153 are configured to surround the IDC 180A and the arms 153 and 154 are configured to surround the IDC 180B. Each arm 152-154 includes a cut-out 183 for receiving a portion of the IDC 180. The adjacent cut-outs 183 form an IDC channel 261 that intersects a corresponding conductor channel 162-169. In some examples, when the IDC channel 261 and the corresponding conductor channel 162-169 form an angle less than or greater than 90 degree, the IDC's 180A and 180B can be positioned closer to each other to increase density of IDC's 180 used by the jack assembly 108. Although the foregoing description relates specifically to the arms 152-154 and the conductor channel 162 and 163, the description can be similarly be applied to the arms 155-161 and the channels 164-169.


In some examples, the contact subassembly 114 includes engaging grooves 221 (FIG. 2) for engaging corresponding latch projections 218 and 220 of the shield cap 116. As described below, the shield cap 116 is configured to cover at least partially the contact subassembly 114 and assist each wire conductor of the cable 190 to engage the slot 181 of each IDC 180 when assembling the shield cap 116 to the contact subassembly 114. The structure of the contact subassembly 114 is disclosed in further detail by U.S. Pat. No. 7,563,125, entitled “Jack Assembly for Reducing Crosstalk,” to Paul John Pepe, et al. The entirety of the patent is herein incorporated by reference.



FIGS. 4-8 illustrate an exemplary shield cap 116 formed in accordance with the principles of the present disclosure. FIG. 4 is a perspective view of an exemplary shield cap 116 of FIGS. 1 and 2. FIG. 5 is an exploded view of the shield cap 116 of FIG. 4. FIG. 6 is a perspective view of an exemplary body portion 209 of the shield cap 116 of FIGS. 4 and 5. The shield cap 116 is configured to be coupled to the jack housing 109 and/or the contact subassembly 114 to at least partially cover the contact subassembly 114. In some examples, the shield cap 116 includes a hybrid structure having a main body of molded plastic material and opposite side shields made of sold metallic plates. For example, the shield cap 116 includes a body portion 209 having an inner surface 210 and an outer surface 211, and opposite shield plates 215 and 217. The inner surface 210 of the body portion 209 faces the contact subassembly 114 when the shield cap 116 engages the contact subassembly 114 (FIG. 1).


In addition to the cable sleeve 118 as described above, the body portion 209 further includes a cable sleeve opening 212, opposite sidewalls 214 and 216 and latch projections 218 and 220. The cable sleeve opening 212 is formed on the inner surface 210 and leads into and through the cable sleeve 118. The opposite sidewalls 214 and 216 extend outward at a substantially perpendicular angle with respect to the inner surface 210. In some examples, each sidewall 214 or 216 can taper or narrow as the sidewall 214 or 216 extends outward.


The latch projections 218 and 220 are formed on the sidewalls 214 and 216, respectively, for attaching the shield cap 116 to the contact subassembly 114 or the jack housing 109. In some examples, the latch projections 218 and 220 are integrally formed with the body portion 209. For example, as discussed below, where the body portion 209 is made from homogenous plastic, the latch projections 218 and 220 can be made from the same plastic so that the latch projections 218 and 220 are formed to be unitary with the plastic body portion 209. In some examples, the sidewalls 214 and 216 are configured to flex outward so that the shield cap 116 slides onto the contact subassembly 114 so that the latch projections 218 and 220 engage the corresponding engaging grooves 221 (FIG. 2). For example, as the shield cap 116 is inserted over the contact subassembly 114, each latch projection 218 and 220 slidably engages a corner or outer surface of the contact subassembly 114, thereby exerting an outward force on the sidewalls 214 and 216, respectively. The latch projections 218 and 220 continue to slide along the outer surface of the contact subassembly 114 until the latch projections 218 and 220 engage the engaging grooves 221 of the contact subassembly 114. In other examples, instead of the engaging grooves 221 of the contact subassembly 114, the jack housing 109 can have latch openings on the top side 126 and the bottom side 128 for engaging the latch projections 218 and 220.


The body portion 209 of the shield cap 116 is fabricated from a non-conductive material. In some examples, the body portion 209 is entirely made from a homogeneous non-conductive material without conductive materials or conductive particles. In some examples, the non-conductive material includes a polypropylene or other thermoplastic polymer. The non-conductive material may also include polymeric or plastic materials such as polycarbonate, ABS, and/or PC/ABS blend.


In other examples, the body portion 209 may be made from a plastic blended with a material adapted for reducing crosstalk. For example, the body portion 209 can be made from a non-conductive material having conductive particles dispersed therein. The conductive particles may include, for example, a conductive powder or conductive fibers. For example, the conductive particles may be carbon powders, carbon fibers, silver coated glass beads or fibers, nickel coated carbon fibers, or stainless steel fibers. By way of example, the body portion 209 may be formed in an injection molding process that uses pellets containing the non-conductive material and the conductive particles. The pellets may be made by adding a conductive powder or conductive fibers to molten resin. After extruding and cooling the resin mixture, the material may be chopped or formed into pellets. Alternatively, the conductive powder or fiber may be added during an injection molding process. The conductive particles form a conductive network that facilitates providing crosstalk, EMI and/or RFI shielding. When the body portion 209 of the shield cap 116 is ultimately formed, the conductive particles may be evenly distributed or dispersed throughout. Alternatively, the conductive particles may be distributed in clusters. Further, during the molding process, the conductive particles may be forced to move (e.g., through magnetism or applied current) to certain areas so that the density of the conductive particles is greater in desired areas.


The shield cap 116 further includes the opposite shield plates 215 and 217 for at least partially cover the contact subassembly 114 for reducing alien crosstalk between adjoining electrical connector assemblies 100. The opposite shield plates 215 and 217 are arranged to extend outward at a substantially perpendicular angle with respect to the inner surface 210 of the body portion 209 and adjacent the opposite sidewalls 214 and 216. The shield plates 215 and 217 are connected to opposite sides 232 and 234 of the body portion 209. In some examples, the shield plates 215 and 217 are symmetrically arranged on the body portion 209. In some examples, the shield plates 215 and 217 are configured to cover the contact subassembly 114 and at least partially the jack housing 108 when the body portion 209 engages the contact subassembly 114 or the jack housing 108. For example, as shown in FIG. 1, when the body portion 209 is coupled to the contact subassembly 114 by the latch projections 218 and 220, the opposite sidewalls 214 and 216 covers the opposite sides of the contact subassembly 114 adjacent the top side 126 and the bottom side 128, and the opposite shield plates 215 and 217 covers the other opposite sides of the contact subassembly 114 and at least partially the opposite sides 122 and 124 of the jack housing 108. Accordingly, the shield cap 116 encloses the IDC's 180 and the conductors 190 exposed at the contact subassembly 114 in the rear direction and shields them from other electrical components of adjacent electrical connector assemblies 100 (FIG. 10). Further, the shield cap 116 can shield other electrical components, such as the electrical contacts 134 and the circuit board, contained in the jack housing 108.


In particular, as shown in FIG. 10, the electrical connector assemblies 100 are arranged for high circuit density so that the sides 122 and 124 of the jack housings 108 are arranged close to one another in series. In this configuration, the opposite shield plates 215 and 217 are configured to cover the contact subassembly 104 and at least partially the sides 122 and 124 of the jack housing 108 so that the shield plates 215 and 217 reduce alien crosstalk that exists between the adjoining electrical connector assemblies 100. In other embodiments, the opposite shield plates 215 and 217 may cover the entire sides 122 and 124 of the jack housing 108 as well as the contact subassembly 114.


The shield plates 215 and 217 are made of solid metallic plates. Such solid metallic plates allow the shield plates 215 and 217 to be thin enough to save space when the electrical connector assemblies 100 are arranged as shown in FIG. 10. Further, the solid metallic plates enhance the strength of the shield plates 215 and 217 and show improved shielding performance. The shield plates 215 and 217 may be formed of any material suitable for minimizing crosstalk, EMI and/or RFI. The material may include, but not limited to, stainless steel, gold, nickel-plated copper, silver, silvered copper, nickel, nickel silver, copper or aluminum.


The shield plates 215 and 217 are not keyed to the body portion 209. Thus, the shield plates 215 and 217 are not fastened to the body portion 209 with fasteners. In some examples, the shield plates 215 and 217 are integrally formed with the body portion 209 in an overmolding process. In other examples, the shield plates 215 and 217 can be snap-fitted to the body portion 209. In yet other examples, the shield plates 215 and 217 are attached to the body portion 209 with adhesive.


In some examples, the shield plates 215 and 217 are self-supported to the body portion 209. In some examples, the shield plates 215 and 217 are configured to be removable from the body portion 209. For example, where one shield plate is only needed on the body portion 209, the other shield plate can be removed from the body portion 209.



FIG. 7 is a perspective view of exemplary shield plates overmolded to the body portion of FIG. 6. In some examples, the shield plates 215 and 217 are made in one piece. For example, the shield plates 215 and 217 can be part of a unitary structure including the shield plates 215 and 217 interconnected by one or more cross-members 237. In the depicted example, the shield plates 215 and 217 can be made from a sheet metal by stamping process. For example, the shield plates 215 and 217 are stamped from a sheet metal so as to be interconnected by one or more cross members 237. Such a stamped metal sheet is bent as needed to produce the shield plates 215 and 217 as shown in FIG. 7. The shield plates 215 and 217 and the cross members 237 are used as a pre-mold insert. For example, the cross members 237 are placed into a mold for producing the body portion 209 before a plastic material is injected into the mold to produce the body portion 209.



FIG. 8 is an expanded view of another exemplary shield cap with an exemplary support bar. In some examples, the shield plates 215 and 217 can be supported against the body portion 209, as well as against each other, by a support structure. For example, as shown in FIG. 8, a support bar 238 is configured to extend between the opposite shield plates 215 and 217 to secure the shield plates 215 and 217. In some examples, the support bar 238 is overmolded with other components, such as the body portion 209 and the shield plates 215 and 217. In some examples, the support bar can be integrally formed with the shield plates 215 and 217 and made from the same conductive material as the shield plates 215 and 217. In other examples, the shield plates 215 and 217 include bar holes 282 configured to receive and secure the ends of the support bar 238.


Referring again to FIG. 6, the body portion 209 includes cross walls 170-177. Each cross wall 170-177 includes a first wall portion 222, a second wall portion 224, and a gap G that separates the wall portions 222 and 224 from each other.



FIGS. 9A and 9B are side views of the cross wall 177 and the conductor channel 169 as the cross wall 177 engages the insulated wire conductor 190 and advances the conductor 190 into the conductor channel 169 and corresponding IDC 180. As shown, when the axial force F is applied to the shield cap 116 (FIG. 2), the wall portions 222 and 224 contact the wire conductor 190 and advance the wire conductor 190 through the slot 181. When the shield cap 116 and the contact subassembly 114 are engaged (FIG. 1), the wall portions 222 and 224 cooperate in providing strain relief for the wire conductor 190 and maintaining the wire conductor 190 in electrical contact with the IDC 180. The structure of the inner surface 210 of the body portion 209 and the engagement mechanism between the body portion 209 and the contact subassembly 114 are further described in U.S. Pat. No. 7,563,125, entitled “Jack Assembly for Reducing Crosstalk,” to Paul John Pepe, et al. The entirety of the patent is herein incorporated by reference.



FIG. 10A is a perspective view of exemplary electrical connector assemblies arranged close to one another in a high density configuration. In particular, the electrical connector assemblies 100 are arranged for high circuit density so that the sides 122 and 124 of the jack housings 108 are arranged close to one another in series. In some examples, the shield plates 215 and 217 are not electrically connected between the adjacent assemblies 100. For example, the shield plate 215 of an assembly 100 is not electrically connected to the shield plate 217 of an adjacent assembly 100. In this configuration, the assemblies 100 may be shielded without ground connection, which is also referred to as electronic floating shield. In some examples, for the electronic floating shield, the assemblies 100 are spaced apart at a predetermined distance so that a gap 278 is formed between the shield plates 215 and 217 of the adjacent assemblies 100, as shown in FIG. 10B. The gap 278 operates as an electrical insulator between the adjacent assemblies 100. In other examples, the shield plates 215 and 217 may include a dielectric material 280 that operates to prevent the adjacent shield plates 215 and 217 from being electrically connected between adjoining assemblies 100. As shown in FIG. 10A, the shield plates 215 and 217 may be coated with the dielectric material, or covered with a dielectric film. In other examples, the shield plates may include one or more dielectric stubs, tabs or other projections, which are configured to maintain electric insulation between adjacent assemblies 100.


In some examples, the assembly 100 has only one shielding plate on either side 232 or 234 of the body portion 209. In this configuration, the assemblies 100 may be abutted to one another in series without the gap 278 or the dielectric material 280, as described above. When the assemblies 100 are abutted to one another, the assemblies 100 are not electrically connected to one another because the body portion 209 of one assembly 100, which is made from a non-conductive material, is arranged to touch the shield plate of the other assembly 100.


In other examples, where the assembly 100 is shielded with a ground connection, adjacent assemblies 100 may be abutted in series so that the adjacent shield plates 215 and 217 are electrically connected to each other between the adjacent assemblies 100. In this configuration, the body portion 209 may incorporate a material for reducing crosstalk. For example, the body portion 209 can be made from a non-conductive material having conductive particles dispersed therein. The conductive particles may include, for example, a conductive powder or conductive fibers. For example, the conductive particles may be carbon powders, carbon fibers, silver coated glass beads or fibers, nickel coated carbon fibers, or stainless steel fibers. FIG. 11 is a rear perspective, exploded view of the electrical connector 100 of FIG. 1. In the depicted example, the rear end 112 of the jack housing 109 is open to the cavity 132 for receiving the contact subassembly 114.


The contact subassembly 114 includes the array of electrical contacts 134, a base 260, a circuit board 262, and a wire terminating structure 274. The base 260 extends from a mating end 119 of the contact subassembly 114 to the circuit board 262. The array of electrical contacts 134 is supported on the base 260. The wire terminating structure 274 extends rearward from the circuit board 262 to terminating portions 144, and is configured to hold a plurality of wire termination conductors 180 therein. The wire terminating structure 274 is sized to substantially fill the rear portion of the cavity 132. In some examples, the wire terminating structure 274 can include key features 276 for orienting the contact subassembly 114 with respect to the jack housing 109 during assembly. The terminating portions 114 are described below in further detail with reference to FIG. 3.


The contact subassembly 114 is loaded into the jack housing 109 through the rear end 112 thereof. When loaded, the base 260 is positioned proximate the front end 110 of the jack housing 109 such that the array of electrical contacts 134 are exposed to the cavity 132. The wire terminating structure 274 is partially received within the cavity 132 and substantially fills the rear portion of the cavity 132. Tabs 138 extending from the wire terminating structure 274 engage the jack housing 109 and secure the contact subassembly 114 to the jack housing 109. When assembled, the terminating portions 144 are exposed and configured to receive wire conductors of the cable 190 (FIG. 1). Alternatively, the wire conductors of the cable 190 may be terminated to the terminating portions 144 prior to loading the contact subassembly 114 into the jack housing 109.



FIGS. 12 and 13 illustrate the contact subassembly 114 with the wire terminating structure 274 (FIG. 11) removed to better describe the structure of the wire termination conductors 180. FIG. 12 is a perspective view of exemplary components of the contact subassembly 114 of FIG. 11. FIG. 13 is a side view of exemplary components of the contact subassembly 114 of FIG. 11.


In the depicted example, the contact subassembly 114 further includes intermediate contacts 140 supported by the base 260 and engaged with the circuit board 262. As illustrated, each electrical contact 134 is connected to a corresponding intermediate contact 140. Each intermediate contact 140 is then connected to a corresponding wire termination conductor 180 through the circuit board 262. As described above, a wire conductor of the cable 190 is inserted into the slot 181 so as to engage a corresponding wire termination conductor 180. When the insulated wire 190 is inserted into the slot 181, opposing blades 274 (FIG. 14) defining the slot 181 cut through the insulation of the wire and exposes a conductor of the wire 190. As a result, the slot 181 embeds the conductor of the wire 190 therein, thereby making an electrical connection between the wire termination conductor 180 and the wire 190.


The array of electrical contacts 134 is configured to engage plug contacts 135 of the plug 106, respectively, at a mating interface 136 between the electrical connector 100 and the plug 106.



FIG. 14 illustrates an exemplary wire termination conductor 180. FIG. 14A is a top view of an exemplary wire termination conductor 180, FIG. 14B is a side view of the wire termination conductor 180 of FIG. 14A, and FIG. 14C is a bottom view of the wire termination conductor 180 of FIG. 14A.


In the depicted example, the wire termination conductor 180 has a fixed end 182 and a free end 184. The wire termination conductor 180 includes a support head 186 at the fixed end 182 and a wire engaging body 188 that extends from the support head 186 to the free end 184. As shown in FIG. 13, the support head 186 is inserted into a corresponding engaging hole 264 formed in the circuit board 262 so as to be supported by the circuit board 262. As described above, the support head 186 is electrically connected to a corresponding electrical contact 134 through the circuit board 262 and/or a corresponding intermediate contact 140.


As the support head 186 is held on the circuit board 262, the wire engaging body 188 extends from the circuit board 262 in a cantilever manner. In some examples, the wire engaging body 188 extends substantially at a perpendicular angle with respect to the circuit board 262. As describe above, the wire engaging body 188 includes the slot 181 for engaging the cable 190 and electrically connecting the wire termination conductor 180 with the wire conductor of the cable 190.


In some examples, the wire engaging body 188 has opposite major surfaces 192 and 194, a peripheral surface 196, and an internal surface 197. The peripheral surface 196 and the internal surface 197 extend between the opposite major surface 192 and 194. In particular, the peripheral surface 196 and the internal surface 197 are defined by side surfaces formed between the opposite major surfaces 192 and 194 along the contours of the opposite major surfaces 192 and 194.


The wire engaging body 188 includes a wire contact portion 198 configured to form an electrical contact with the wire conductor of the cable 190 within the slot 181 of the wire termination conductor 180. In some examples, the wire contact portion 198 includes opposing blade arms 272 and opposing blades 274 formed on the internal surface 197 of the opposing blade arms 272. The opposing blade arms 272 are configured to flex apart when the wire 190 is inserted into the slot 181. In the depicted example, the wire contact portion 198 is arranged on the internal surface 197 (e.g., a surface on which the opposing blades 274 are formed) of the wire engaging body 188.



FIG. 15 illustrates an example shielding layer 200 formed on a wire termination conductor 180. As shown, the wire termination conductor 180 is at least partially coated with the shielding layer 200. The shielding layer 200 is configured to provide EMI/RFI shielding between electrical connectors 100 arranged in high density configurations, thereby improving alien crosstalk performance. Further, the shielding layer 200 helps reducing or minimizing crosstalk between adjacent wire termination conductors 180 arranged within the same electrical connector 100.


The shielding layer 200 includes a shielding material adapted for reducing crosstalk between adjacent electrical connectors 100 and/or between adjacent wire termination conductors 180. In the depicted example, the shielding layer 200 includes a first layer 268 and a second layer 270. The first layer 268 is formed on at least a portion of the wire termination conductor 180. The second layer 270 is formed on at least a portion of the first layer 268.


In some examples, the first layer 268 is formed with a dielectric material, which provides an electrical insulation layer. Examples of the dielectric material include a variety of polymer. As described below, in some examples, the first layer 268 may be formed by powder coating. Candidate powder materials include, but not limited to, High Density Polyethylene (HDPE), Scotchcast 5400, AkzoNobel Corvel 78-7001, Scotchcast 265, Dupont Abcite 9016, AkzoNobel Corvel 17-7005, AkzoNobel Corvel 17-7004, AkzoNobel Corvel 17-11002, Scotchcast 5133, Scotchcast 260, Scotchcast 5230N, and AkzoNobel Corvel 17-4001.


In some example, the second layer 270 is formed with a conductive material. For example, the second layer 270 may be formed with a conductive ink. Preferably, the conductive ink includes a silver ink. In other examples, however, the second layer 126 may be formed of any conductive material suitable for minimizing crosstalk, EMI and/or RFI. Examples of the conductive material include, but not limited to, stainless steel, gold, nickel-plated copper, silver, silvered copper, nickel, nickel silver, copper or aluminum.


The shielding layer 200 may be formed only on an exposed portion of the wire termination conductor 180. In the depicted example, the shielding layer 200 is coated only on at least a portion of the wire engaging body 188, and may not be formed on the support head 186. As described above, the support head 186 is configured to be inserted into the electrical connector 100 through the circuit board 262, thereby hidden from the outside of the electrical connector 100. On the other hand, the wire engaging body 188 extends from the electrical connector 100 and exposed to the outside thereof. Thus, forming the shielding layer 200 on the wire engaging body 188 is sufficient to reduce crosstalk, EMI and/or RFI between adjacent wire termination conductors 180 within the same electrical connector 100 and/or between wire termination conductors 180 of adjacent electrical connectors 100.


In some examples, the shielding layer 200 may be formed only on a portion of the wire termination conductor 180, provided that the wire contact portion 198 of the wire termination conductor 180 is provided for an electrical contact with the wire conductor of the cable 190. In the depicted example, the shielding layer 200 is formed only on the opposite major surfaces 192 and 194. The shielding layer 200 is not formed on the peripheral surface 196 or the internal surface 197 so that the wire contact portion 198 is saved from being covered by the shielding layer 200 and, thus, properly operates as an electrical contact point with the wire conductor of the cable 190. In other examples, the peripheral surface 196 can be coated while the internal surface 197 is not coated.


A thickness of the shielding layer 200 (the first layer 268 and/or the second layer 270) may be varied based upon several factors, such as a level of crosstalk, EMI and/or RFI. The thickness of the shielding layer 200 may be varied among the wire termination conductors 180 or may be substantially the same for all the wire termination conductors 180. In some examples, the first layer 268 is thicker than the second layer 270. In some embodiments, the thickness of the first layer 268 can range between 0.12 mm and 0.26 mm, and the thickness of the second layer 270 can range between 0.08 mm and 0.2 mm. In some examples, the thickness of the first layer 268 is about 0.15 mm, and the thickness of the second layer 270 is about 0.10 mm. In other embodiments, the first and second layers 268 and 270 can have other thicknesses as well.


The first layer 268, which is a dielectric layer, may be formed by various processes, such as, but not limited to, powder coating. In some examples, the first layer 268 may be provided on the wire termination conductor 180 by applying electrically insulative particles onto the surface of the wire termination conductor 180. For example, the first layer 268 may be formed by spraying, sputtering, depositing, or adhering dielectric particles onto a predetermined portion of the wire termination conductor. In one example, the first layer 268 is formed by electrostatically charging polymer particles, either thermosets or thermoplastics. In another example, the first layer 268 is formed by a fluidized bed process. The powder particles cling to the wire termination conductor 180 due to their opposite charge polarity. The larger the charge difference and the longer the wire termination conductor 180 is exposed to the powder, the thicker the first layer 268 builds up. Once the required thickness is reached, the coated conductor 180 is transferred to a thermal curing oven where the powder gels and solidifies forming a durable polymer coating. In yet another example, the first layer 268 is formed by spraying an epoxy onto the wire engaging body 188 of the wire termination conductor 180. In still another example, the first layer 268 is formed by dipping the wire engaging body 188 into a bath or other containers that include a fluid comprising a dielectric material. The support head 186 of the wire termination conductor 180 and/or any other portions on which the first layer 268 is not desired may be masked off prior to spraying the remaining exposed portion of the wire termination conductor 180 with a dielectric material or dipping the exposed portion of the wire termination conductor 180 into a bath that includes the dielectric material. Alternatively, the first layer 268 may be provided on the wire termination conductor 180 by adhering electrically insulative films to the predetermined portion of the wire termination conductor 180. For example, the first layer 268 may be polyimide film that is joined to the predetermined portion of the wire termination conductor 180.


The second layer 270, which is a conductive ink layer, may be formed by various processes, such as printing processes. Examples of printing processes include screen, gravure, pad, ink jet and aerosol-jet printings.


The shielding layer 200 on the wire termination conductor 180 according to the present disclosure is advantageous where a plurality of the wire termination conductors 180 are closely arranged in the electrical connector 100 as described in the depicted examples, and/or whether a plurality of electrical connectors 100 are arranged closely arranged or abutted to one another, as found in high density patch panels, for example.


In some examples, the wire termination connector 180 with the shielding layer 200, as shown in FIG. 15, and the shield cap 116, as shown in FIGS. 1, 2, 4, 5, 7, 8, and 10, may be independently implemented in the connector assembly 100. For example, the connector assembly 100 may include either the shielding layer 200 or the shield cap 116, but not both. In other examples, the configurations of the shielding layer 200 and the shield cap 116 are both implemented in the connector assembly 100.


The various examples described above are provided by way of illustration only and should not be construed to limit the scope of the present disclosure. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example examples and applications illustrated and described herein, and without departing from the true spirit and scope of the present disclosure.

Claims
  • 1. An electrical connector comprising: a connector housing having a front end and a rear end, the connector housing comprising: a cavity opened at the front end for receiving a plug;an insulation displacement contact supported by the connector housing and extending from the connector housing at the rear end, anda shield cap mounted to the connector housing at the rear end, the shield cap comprising: a molded, electrically non-conductive body portion including one or more unitary latch portions for attaching the shield cap to the connector housing; andopposite shield plates connected to opposite sides of the body portion and configured to at least partially cover the insulation displacement contact, wherein the opposite shield plates are made from electrically conductive material,wherein the opposite shield plates are overmolded with the body portion.
  • 2. The electrical connector of claim 1, wherein the opposite shield plates are made from metallic material adapted for reducing crosstalk between adjoining electrical connectors.
  • 3. The electrical connector of claim 1, wherein the body portion is entirely made from homogenous plastic.
  • 4. The electrical connector of claim 1, wherein the shield cap includes a cable sleeve through which a cable is inserted to be connected to the insulation displacement contact.
  • 5. The electrical connector of claim 1, wherein the body portion includes opposite sidewalls configured to engage the shield cap with the connector housing.
  • 6. The electrical connector of claim 5, wherein the opposite sidewalls are configured to at least partially cover the insulation displacement contact.
  • 7. The electrical connector of claim 5, wherein each of the opposite sidewalls includes the latch projection configured to engage the connector housing.
  • 8. The electrical connector of claim 1, wherein the opposite shield plates are connected with a support bar, the support bar arranged to transverse the body portion between the shield cap and the connector housing at the rear end, wherein the support bar is overmolded with the body portion and the opposite shield plates.
  • 9. The electrical connector of claim 1, wherein the opposite shield plates are interconnected with one or more cross members, the one or more cross members configured to be inserted into the body portion during an overmolding process.
  • 10. The electrical connector of claim 1, wherein the insulation displacement contact is at least partially coated with a shielding layer.
  • 11. The electrical connector of claim 1, wherein the shielding layer includes a first layer and a second layer formed above the first layer, the first layer formed with a dielectric material, and the second layer formed with a conductive material.
  • 12. The electrical connector of claim 11, wherein the dielectric material is a polymer.
  • 13. The electrical connector of claim 11, wherein the conductive material is a conductive ink.
  • 14. The electrical connector of claim 13, wherein the conductive ink is a silver ink.
  • 15. A shield cap mounted to an electrical connector, the shield cap comprising: a molded body portion including one or more unitary latch portions for attaching the shield cap to the electrical connector, wherein the body portion is formed from an electrically non-conductive material; andopposite shield plates connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector, wherein the opposite shield plates are made from electrically conductive material,wherein the opposite shield plates are overmolded with the body portion.
  • 16. The shield cap of claim 15, wherein the opposite shield plates are made from conductive material adapted for reducing crosstalk between adjoining electrical connectors.
  • 17. The shield cap of claim 15, wherein the shield cap includes a cable sleeve through which a cable is inserted to be connected to the one or more insulation displacement contacts.
  • 18. The shield cap of claim 15, wherein the opposite shield plates are connected with a support bar, the support bar arranged to transverse the body portion between the shield cap and the connector housing at the rear end, wherein the support bar is overmolded with the body portion and the opposite shield plates.
  • 19. The shield cap of claim 15, wherein the opposite shield plates are interconnected with one or more cross members, the one or more cross members configured to be inserted into the body portion during an overmolding process.
  • 20. A jack assembly for terminating a plurality of line wires of a communications cable, the jack assembly comprising: a dielectric jack housing having a front end and a rear end, the jack housing comprising: a cavity opened at the front end for receiving a plug;a contact subassembly joined to the rear end, the contact subassembly comprising a plurality of arms extending from the contact subassembly against the rear end of the jack housing and spaced part to define a plurality of conductor channels; and a plurality of insulation displacement contacts, each held within each of the plurality of conductor channels; anda plurality of electrical contacts configured and positioned in the cavity for engaging corresponding contacts of the plug, anda shield cap mounted to the jack housing at the rear end to at least partially cover the contact subassembly, the shield cap comprising: a molded body portion having an inner surface and an outer surface, wherein the body portion is made from a non-conductive material;a cable sleeve extending outwardly from the outer surface of the body portion and configured to receive a cable having a plurality of conductors, wherein the cable is inserted through the cable sleeve and, wherein each of the plurality of conductors of the cable is connected to each of the plurality of insulation displacement contacts;opposite sidewalls extending from the inner surface and having one or more latch projections configured to attach the shield cap to the jack housing, wherein the opposite sidewalls including the one or more latch projections are formed to be unitary with the body portion; andopposite shield plates extending from the inner surface and configured to at least partially cover the contact subassembly, wherein the opposite shield plates are made from an electrically conductive material, and wherein the opposite shield plates and the opposite sidewalls are alternately arranged on a peripheral of the body portion,wherein the opposite shield plates are overmolded with the body portion.
  • 21. The jack assembly of claim 20, wherein the non-conductive material includes a homogeneous thermoplastic polymer.
  • 22. The jack assembly of claim 20, wherein each of the plurality of insulation displacement contacts includes a slot configured to hold each of the plurality of conducts of the cable.
  • 23. The jack assembly of claim 20, wherein each of the plurality of insulation displacement contacts extends across each of the plurality of conductor channels so that, when each of the plurality of conductors of the cable is inserted into the each of the plurality of insulation displacement contacts, each of the plurality of conductors of the cable rests within each of the plurality of conductor channels.
  • 24. The jack assembly of claim 20, wherein the body portion includes a plurality of cross walls projecting outwardly from the inner surface, each cross wall having first and second wall portions separated by a gap, wherein each cross wall is positioned to be inserted into one of the plurality of conductor channels so that each of the plurality of insulation displacement contacts fits within the gap.
  • 25. The jack assembly of claim 20, wherein the opposite shield plates are connected with a support bar, the support bar arranged to transverse the body portion between the shield cap and the connector housing at the rear end, wherein the support bar is overmolded with the body portion and the opposite shield plates.
  • 26. The jack assembly of claim 20, wherein the opposite shield plates are interconnected with one or more cross members, the one or more cross members configured to be inserted into the body portion during an overmolding process.
  • 27. The jack assembly of claim 20, wherein the plurality of insulation displacement contacts is at least partially coated with a shielding layer.
  • 28. The jack assembly of claim 27, wherein the shielding layer includes a first layer and a second layer formed above the first layer, the first layer formed with a dielectric material, and the second layer formed with a conductive material.
  • 29. The jack assembly of claim 28, wherein the dielectric material is a polymer.
  • 30. The jack assembly of claim 28, wherein the conductive material is a conductive ink.
  • 31. The jack assembly of claim 29, wherein the conductive ink is a silver ink.
  • 32. An electrical connector comprising: a connector housing having a front end and a rear end, the connector housing comprising: a cavity opened at the front end for receiving a plug;an insulation displacement contact supported by the connector housing and extending from the connector housing at the rear end, anda shield cap mounted to the connector housing at the rear end, the shield cap comprising: a molded, electrically non-conductive body portion including one or more unitary latch portions for attaching the shield cap to the connector housing; andopposite shield plates connected to opposite sides of the body portion and configured to at least partially cover the insulation displacement contact, wherein the opposite shield plates are made from electrically conductive material,wherein the opposite shield plates are connected with a support bar, the support bar arranged to transverse the body portion between the shield cap and the connector housing at the rear end, wherein the support bar is overmolded with the body portion and the opposite shield plates.
  • 33. An electrical connector comprising: a connector housing having a front end and a rear end, the connector housing comprising: a cavity opened at the front end for receiving a plug;an insulation displacement contact supported by the connector housing and extending from the connector housing at the rear end, anda shield cap mounted to the connector housing at the rear end, the shield cap comprising: a molded, electrically non-conductive body portion including one or more unitary latch portions for attaching the shield cap to the connector housing; andopposite shield plates connected to opposite sides of the body portion and configured to at least partially cover the insulation displacement contact, wherein the opposite shield plates are made from electrically conductive material,wherein the opposite shield plates are interconnected with one or more cross members, the one or more cross members configured to be inserted into the body portion during an overmolding process.
  • 34. A shield cap mounted to an electrical connector, the shield cap comprising: a molded body portion including one or more unitary latch portions for attaching the shield cap to the electrical connector, wherein the body portion is formed from an electrically non-conductive material; andopposite shield plates connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector, wherein the opposite shield plates are made from electrically conductive material,wherein the opposite shield plates are connected with a support bar, the support bar arranged to transverse the body portion between the shield cap and the connector housing at the rear end, wherein the support bar is overmolded with the body portion and the opposite shield plates.
  • 35. A shield cap mounted to an electrical connector, the shield cap comprising: a molded body portion including one or more unitary latch portions for attaching the shield cap to the electrical connector, wherein the body portion is formed from an electrically non-conductive material; andopposite shield plates connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector, wherein the opposite shield plates are made from electrically conductive material,wherein the opposite shield plates are interconnected with one or more cross members, the one or more cross members configured to be inserted into the body portion during an overmolding process.
  • 36. A jack assembly for terminating a plurality of line wires of a communications cable, the jack assembly comprising: a dielectric jack housing having a front end and a rear end, the jack housing comprising: a cavity opened at the front end for receiving a plug;a contact subassembly joined to the rear end, the contact subassembly comprising a plurality of arms extending from the contact subassembly against the rear end of the jack housing and spaced part to define a plurality of conductor channels; and a plurality of insulation displacement contacts, each held within each of the plurality of conductor channels; anda plurality of electrical contacts configured and positioned in the cavity for engaging corresponding contacts of the plug, anda shield cap mounted to the jack housing at the rear end to at least partially cover the contact subassembly, the shield cap comprising: a molded body portion having an inner surface and an outer surface, wherein the body portion is made from a non-conductive material;a cable sleeve extending outwardly from the outer surface of the body portion and configured to receive a cable having a plurality of conductors, wherein the cable is inserted through the cable sleeve and, wherein each of the plurality of conductors of the cable is connected to each of the plurality of insulation displacement contacts;opposite sidewalls extending from the inner surface and having one or more latch projections configured to attach the shield cap to the jack housing, wherein the opposite sidewalls including the one or more latch projections are formed to be unitary with the body portion; andopposite shield plates extending from the inner surface and configured to at least partially cover the contact subassembly, wherein the opposite shield plates are made from an electrically conductive material, and wherein the opposite shield plates and the opposite sidewalls are alternately arranged on a peripheral of the body portion,wherein the body portion includes a plurality of cross walls projecting outwardly from the inner surface, each cross wall having first and second wall portions separated by a gap, wherein each cross wall is positioned to be inserted into one of the plurality of conductor channels so that each of the plurality of insulation displacement contacts fits within the gap.
  • 37. A jack assembly for terminating a plurality of line wires of a communications cable, the jack assembly comprising: a dielectric jack housing having a front end and a rear end, the jack housing comprising: a cavity opened at the front end for receiving a plug;a contact subassembly joined to the rear end, the contact subassembly comprising a plurality of arms extending from the contact subassembly against the rear end of the jack housing and spaced part to define a plurality of conductor channels; and a plurality of insulation displacement contacts, each held within each of the plurality of conductor channels; anda plurality of electrical contacts configured and positioned in the cavity for engaging corresponding contacts of the plug, anda shield cap mounted to the jack housing at the rear end to at least partially cover the contact subassembly, the shield cap comprising: a molded body portion having an inner surface and an outer surface, wherein the body portion is made from a non-conductive material;a cable sleeve extending outwardly from the outer surface of the body portion and configured to receive a cable having a plurality of conductors, wherein the cable is inserted through the cable sleeve and, wherein each of the plurality of conductors of the cable is connected to each of the plurality of insulation displacement contacts;opposite sidewalls extending from the inner surface and having one or more latch projections configured to attach the shield cap to the jack housing, wherein the opposite sidewalls including the one or more latch projections are formed to be unitary with the body portion; andopposite shield plates extending from the inner surface and configured to at least partially cover the contact subassembly, wherein the opposite shield plates are made from an electrically conductive material, and wherein the opposite shield plates and the opposite sidewalls are alternately arranged on a peripheral of the body portion,wherein the opposite shield plates are connected with a support bar, the support bar arranged to transverse the body portion between the shield cap and the connector housing at the rear end, wherein the support bar is overmolded with the body portion and the opposite shield plates.
  • 38. A jack assembly for terminating a plurality of line wires of a communications cable, the jack assembly comprising: a dielectric jack housing having a front end and a rear end, the jack housing comprising: a cavity opened at the front end for receiving a plug;a contact subassembly joined to the rear end, the contact subassembly comprising a plurality of arms extending from the contact subassembly against the rear end of the jack housing and spaced part to define a plurality of conductor channels; and a plurality of insulation displacement contacts, each held within each of the plurality of conductor channels; anda plurality of electrical contacts configured and positioned in the cavity for engaging corresponding contacts of the plug, anda shield cap mounted to the jack housing at the rear end to at least partially cover the contact subassembly, the shield cap comprising: a molded body portion having an inner surface and an outer surface, wherein the body portion is made from a non-conductive material;a cable sleeve extending outwardly from the outer surface of the body portion and configured to receive a cable having a plurality of conductors, wherein the cable is inserted through the cable sleeve and, wherein each of the plurality of conductors of the cable is connected to each of the plurality of insulation displacement contacts;opposite sidewalls extending from the inner surface and having one or more latch projections configured to attach the shield cap to the jack housing, wherein the opposite sidewalls including the one or more latch projections are formed to be unitary with the body portion; andopposite shield plates extending from the inner surface and configured to at least partially cover the contact subassembly, wherein the opposite shield plates are made from an electrically conductive material, and wherein the opposite shield plates and the opposite sidewalls are alternately arranged on a peripheral of the body portion,wherein the opposite shield plates are interconnected with one or more cross members, the one or more cross members configured to be inserted into the body portion during an overmolding process.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application Ser. No. 61/982,958, filed Apr. 23, 2014, which is incorporated herein by reference in its entirety.

US Referenced Citations (798)
Number Name Date Kind
3958851 Evans May 1976 A
4337989 Asick et al. Jul 1982 A
4773878 Hansell, III Sep 1988 A
4784609 Lau Nov 1988 A
4878858 Dechelette Nov 1989 A
5017156 Sugiyama May 1991 A
5064387 Lybrand Nov 1991 A
5073130 Nakamura Dec 1991 A
5083945 Miskin et al. Jan 1992 A
5125854 Bassler et al. Jun 1992 A
5127845 Ayer et al. Jul 1992 A
5207597 Kline et al. May 1993 A
5222909 Nomura et al. Jun 1993 A
5256086 Ponn Oct 1993 A
5281169 Kiat et al. Jan 1994 A
5288248 Chen Feb 1994 A
5290177 Chal Mar 1994 A
5312273 Andre et al. May 1994 A
5326281 Yin Jul 1994 A
5338227 Nakamura Aug 1994 A
5378172 Roberts Jan 1995 A
5380223 Marsh et al. Jan 1995 A
5397250 Briones Mar 1995 A
5509824 Rodrigues et al. Apr 1996 A
5531606 Rodrigues et al. Jul 1996 A
5531612 Goodall et al. Jul 1996 A
5538440 Rodrigues et al. Jul 1996 A
5564949 Wellinsky Oct 1996 A
5584727 Miller et al. Dec 1996 A
5586911 Miller et al. Dec 1996 A
5593311 Lybrand Jan 1997 A
5599206 Slack et al. Feb 1997 A
5603639 Lai et al. Feb 1997 A
5622523 Kan et al. Apr 1997 A
5628653 Haas et al. May 1997 A
5637014 Sukegawa et al. Jun 1997 A
5637015 Tan et al. Jun 1997 A
5639262 Lim Jun 1997 A
5647765 Haas et al. Jul 1997 A
5651701 Chen Jul 1997 A
5685739 Davis et al. Nov 1997 A
5685740 Lim Nov 1997 A
5688145 Liu Nov 1997 A
5702271 Steinman Dec 1997 A
5718605 Morikawa et al. Feb 1998 A
5722859 Chen Mar 1998 A
5738544 Davis Apr 1998 A
5755595 Davis et al. May 1998 A
5788538 Belopolsky et al. Aug 1998 A
5791943 Lo et al. Aug 1998 A
5830015 Rodrigues et al. Nov 1998 A
5908331 Hsu et al. Jun 1999 A
5913698 Keng Jun 1999 A
5924890 Morin et al. Jul 1999 A
5934940 Maranto et al. Aug 1999 A
5938476 Wu et al. Aug 1999 A
5944559 Wu Aug 1999 A
5954540 Wu Sep 1999 A
5980320 Slack et al. Nov 1999 A
5984726 Wu Nov 1999 A
6007382 Wu Dec 1999 A
6027375 Wu Feb 2000 A
6050854 Fang et al. Apr 2000 A
6053773 Wu Apr 2000 A
6059581 Wu May 2000 A
6059607 Wilson May 2000 A
6066001 Liptak et al. May 2000 A
6077120 Futatsugi et al. Jun 2000 A
6077122 Elkhatib et al. Jun 2000 A
6086420 Wu Jul 2000 A
6086429 Wu Jul 2000 A
6093058 Wu Jul 2000 A
6095862 Doye et al. Aug 2000 A
6099327 Chen Aug 2000 A
6113426 Lin Sep 2000 A
6113427 Wu Sep 2000 A
6126476 Viklund et al. Oct 2000 A
6132253 Wu Oct 2000 A
6135815 Ko et al. Oct 2000 A
6139364 Beutler et al. Oct 2000 A
6139365 Lok Oct 2000 A
6139367 Yeh Oct 2000 A
6142828 Pepe Nov 2000 A
6146205 Lai Nov 2000 A
6155872 Wu Dec 2000 A
6165015 Wu et al. Dec 2000 A
6165016 Lai Dec 2000 A
6168466 Chiou Jan 2001 B1
6168467 Chiou Jan 2001 B1
6171150 Saito et al. Jan 2001 B1
6174198 Wu et al. Jan 2001 B1
6179661 Chiou Jan 2001 B1
6183292 Chen et al. Feb 2001 B1
6186830 Lin et al. Feb 2001 B1
6190205 Wu Feb 2001 B1
6193552 Chiou et al. Feb 2001 B1
6193554 Wu Feb 2001 B1
6203336 Nakamura Mar 2001 B1
6203373 Lin Mar 2001 B1
6203374 Huang et al. Mar 2001 B1
6203375 Chang Mar 2001 B1
6206730 Avery et al. Mar 2001 B1
6210224 Wu Apr 2001 B1
6210226 Zhu et al. Apr 2001 B1
6210231 Lai Apr 2001 B1
6210235 Wu Apr 2001 B1
6210237 Chang Apr 2001 B1
6217378 Wu Apr 2001 B1
6220895 Lin Apr 2001 B1
6227910 Huang May 2001 B1
6234841 Chang et al. May 2001 B1
6250964 Fair et al. Jun 2001 B1
6257929 Wang Jul 2001 B1
6257931 Sakurai et al. Jul 2001 B1
6264504 Wu Jul 2001 B1
6276966 Yamoto et al. Aug 2001 B1
6287147 Lin Sep 2001 B1
6287148 Huang Sep 2001 B1
6287149 Elkhatib et al. Sep 2001 B1
6290535 Lin et al. Sep 2001 B1
6290538 Pocrass Sep 2001 B1
6296521 Chang et al. Oct 2001 B1
6299487 Lopata et al. Oct 2001 B1
6302737 Billman Oct 2001 B1
6315608 Lopata et al. Nov 2001 B1
6319062 Ma et al. Nov 2001 B1
6319063 Huang Nov 2001 B1
6322396 Kuan Nov 2001 B1
6325672 Belopolsky et al. Dec 2001 B1
6328601 Yip et al. Dec 2001 B1
6335869 Branch et al. Jan 2002 B1
6336827 Akama et al. Jan 2002 B1
6341986 Ko Jan 2002 B1
6347961 Zhu et al. Feb 2002 B2
6354875 Wu Mar 2002 B1
6354877 Shuey et al. Mar 2002 B1
6354879 Plehaty Mar 2002 B1
6358066 Gilliland et al. Mar 2002 B1
6358091 Lo et al. Mar 2002 B1
6361367 Daikuhara et al. Mar 2002 B1
6364707 Wang Apr 2002 B1
6364708 Chen et al. Apr 2002 B1
6368153 Hwang Apr 2002 B1
6371810 Iwasaki Apr 2002 B1
6375505 Lin Apr 2002 B1
6375510 Asao Apr 2002 B2
6379184 Bassler et al. Apr 2002 B1
6379185 Belopolsky et al. Apr 2002 B2
6383023 Chang et al. May 2002 B1
6383024 Wang et al. May 2002 B1
6383025 Shi et al. May 2002 B1
6390852 Wang May 2002 B1
6407932 Gaio et al. Jun 2002 B1
6409542 Ivey, Jr. et al. Jun 2002 B1
6416031 Billman Jul 2002 B1
6416358 Kamarauskas et al. Jul 2002 B1
6416360 Zhang et al. Jul 2002 B1
6416361 Hwang Jul 2002 B1
6431887 Yeomans et al. Aug 2002 B1
6435912 Zhu et al. Aug 2002 B1
6435915 Chen Aug 2002 B1
6443768 Dirkers et al. Sep 2002 B1
6447311 Hu et al. Sep 2002 B1
6450835 Lee Sep 2002 B1
6478621 Ma et al. Nov 2002 B2
6478622 Hwang Nov 2002 B1
6478623 Wu Nov 2002 B1
6482037 Zhu et al. Nov 2002 B1
6494741 Handa et al. Dec 2002 B2
6494744 Lee Dec 2002 B1
6497588 Scharf et al. Dec 2002 B1
6506075 Chiran et al. Jan 2003 B2
6506076 Cohen et al. Jan 2003 B2
6508660 Self Jan 2003 B2
6508670 Hwang Jan 2003 B1
6508671 Ko Jan 2003 B2
6517382 Flickinger et al. Feb 2003 B2
6520799 Cheng et al. Feb 2003 B1
6524120 Zhao Feb 2003 B2
6524134 Flickinger et al. Feb 2003 B2
6527564 Yeh Mar 2003 B1
6527593 Handa et al. Mar 2003 B2
6530809 Handa et al. Mar 2003 B2
6533615 Koide et al. Mar 2003 B2
6540555 Festag et al. Apr 2003 B1
6540563 Hu et al. Apr 2003 B1
6554642 Xiang et al. Apr 2003 B1
6554648 Shi et al. Apr 2003 B2
6558191 Bright et al. May 2003 B2
6558196 Festag May 2003 B2
6561849 Naito et al. May 2003 B2
6565388 Van Woensel et al. May 2003 B1
6572411 Aeschbacher et al. Jun 2003 B1
6575789 Bassler et al. Jun 2003 B2
6582252 Lin Jun 2003 B1
6582255 Simmons et al. Jun 2003 B2
6592396 Pepe Jul 2003 B2
6595801 Gardner et al. Jul 2003 B1
6599151 Chiran et al. Jul 2003 B2
6604964 Hoshino et al. Aug 2003 B2
6607308 Dair et al. Aug 2003 B2
6619984 Liu Sep 2003 B2
6619986 Yeh Sep 2003 B1
6619987 Kumamoto et al. Sep 2003 B2
6623307 Hyland et al. Sep 2003 B2
6629857 Ma et al. Oct 2003 B1
6629858 Lo et al. Oct 2003 B2
6629859 Hoshino et al. Oct 2003 B2
6641438 Billman Nov 2003 B1
6652317 Shao Nov 2003 B2
6652320 Inagawa et al. Nov 2003 B2
6655995 Reisinger et al. Dec 2003 B1
6659655 Dair et al. Dec 2003 B2
6663415 Wu Dec 2003 B1
6663432 Inagawa Dec 2003 B2
6666719 Kuroi et al. Dec 2003 B1
6666720 Reisinger et al. Dec 2003 B1
6669514 Wiebking et al. Dec 2003 B2
6674652 Forte et al. Jan 2004 B2
6682368 Murr et al. Jan 2004 B2
6685504 Espenshade Feb 2004 B1
6685505 Espenshade et al. Feb 2004 B1
6685511 Akama et al. Feb 2004 B2
6688914 Espenshade et al. Feb 2004 B1
6688915 Moriwake et al. Feb 2004 B2
6699074 Wu et al. Mar 2004 B1
6702616 Chang et al. Mar 2004 B1
6705894 Comerci et al. Mar 2004 B1
6709290 Yoshida Mar 2004 B2
6709291 Wallace et al. Mar 2004 B1
6709292 Barefoot Mar 2004 B1
6716057 Wu Apr 2004 B1
6729905 Hwang May 2004 B1
6729906 Simmons et al. May 2004 B1
6733332 Espenshade et al. May 2004 B1
6752663 Bright et al. Jun 2004 B2
6764340 Toda Jul 2004 B2
6776629 Shuey Aug 2004 B2
6776665 Huang Aug 2004 B2
6780054 Yip et al. Aug 2004 B2
6786742 Matsuoka Sep 2004 B2
6786770 Huang Sep 2004 B1
6793527 Noro Sep 2004 B2
6793531 Zhang Sep 2004 B1
6799997 Lin et al. Oct 2004 B2
6802740 Fan et al. Oct 2004 B1
6805586 Akama et al. Oct 2004 B2
6811438 Ko Nov 2004 B1
6811439 Shin-Ting Nov 2004 B1
6814612 Hu et al. Nov 2004 B1
6821149 Lai Nov 2004 B2
6821151 Lai Nov 2004 B2
6830480 Yoshioka Dec 2004 B2
6835092 Wan et al. Dec 2004 B2
6837742 Chou et al. Jan 2005 B1
6840798 Kobayashi Jan 2005 B2
6848943 Machado et al. Feb 2005 B2
6851979 Yen Feb 2005 B2
6857904 Lai Feb 2005 B2
6863569 Zhu et al. Mar 2005 B2
6865369 Semmeling et al. Mar 2005 B2
6866539 Chang Mar 2005 B2
6866544 Casey et al. Mar 2005 B1
6870746 Leeson et al. Mar 2005 B2
6874953 Dair et al. Apr 2005 B2
6875031 Korsunsky et al. Apr 2005 B1
6875055 Chu et al. Apr 2005 B2
6878012 Gutierrez et al. Apr 2005 B2
6884117 Korsunsky et al. Apr 2005 B2
6884937 Mistry et al. Apr 2005 B1
6893270 Sercu May 2005 B2
6893272 Yu May 2005 B2
6893293 Ice et al. May 2005 B2
6893294 Moriyama et al. May 2005 B2
6902432 Morikawa et al. Jun 2005 B2
6908339 Tanaka Jun 2005 B2
6913485 Ko Jul 2005 B2
6913487 Beneke et al. Jul 2005 B2
6913489 Chai et al. Jul 2005 B2
6918791 Wan et al. Jul 2005 B2
6921292 Miyazaki Jul 2005 B2
6926540 Juntwait Aug 2005 B1
6926551 Schulz et al. Aug 2005 B1
6926557 Yamaguchi et al. Aug 2005 B1
6929512 Lai Aug 2005 B2
6932640 Sung Aug 2005 B1
6932647 Murayama Aug 2005 B2
6937205 Chou et al. Aug 2005 B2
6939172 Lu Sep 2005 B2
6942521 Jatou et al. Sep 2005 B1
6943287 Lloyd et al. Sep 2005 B2
6948965 Kumamoto et al. Sep 2005 B2
6948979 Chien et al. Sep 2005 B2
6948980 Xiang et al. Sep 2005 B2
6953361 Li et al. Oct 2005 B2
6955565 Lloyd et al. Oct 2005 B2
6957982 Hyland et al. Oct 2005 B1
6966797 Ko Nov 2005 B2
6976870 Li Dec 2005 B1
6976876 Su et al. Dec 2005 B1
6991494 Spink, Jr. Jan 2006 B1
6997747 Norte et al. Feb 2006 B1
7008762 Zhang et al. Mar 2006 B2
7018237 Zhan et al. Mar 2006 B2
7025632 Hu et al. Apr 2006 B2
7029331 Lai Apr 2006 B1
7033219 Gordon et al. Apr 2006 B2
7037136 Korsunsky et al. May 2006 B1
7037137 Lee May 2006 B2
7044790 Zhu et al. May 2006 B2
7044791 Wang May 2006 B2
7052321 Chang May 2006 B2
7052322 Hu et al. May 2006 B2
7059908 Yamaguchi Jun 2006 B2
7066765 Togami et al. Jun 2006 B2
7074082 Kerlin et al. Jul 2006 B2
7074083 Hyland Jul 2006 B2
7074084 Shuey et al. Jul 2006 B2
7074085 Chen Jul 2006 B2
7077707 Hyland et al. Jul 2006 B2
7083468 Walker et al. Aug 2006 B2
7083472 Gordon et al. Aug 2006 B2
7086901 Zhang Aug 2006 B2
7086902 Yang Aug 2006 B1
7090534 Wu et al. Aug 2006 B2
7094103 Lai Aug 2006 B2
7097505 Shanahan et al. Aug 2006 B1
7097507 Zhang et al. Aug 2006 B1
7102082 Ortiz et al. Sep 2006 B2
7104842 Huang et al. Sep 2006 B1
7121890 Chang Oct 2006 B2
7128607 Li Oct 2006 B2
7128610 Chiang Oct 2006 B1
7140918 Delaney et al. Nov 2006 B1
7147511 Litz Dec 2006 B2
7147513 Wada et al. Dec 2006 B2
7150653 Mason Dec 2006 B1
7153162 Mizumura et al. Dec 2006 B2
7160153 Huang Jan 2007 B1
7165995 Fukushima et al. Jan 2007 B2
7165996 Kao Jan 2007 B1
7168959 Kuo et al. Jan 2007 B2
7168985 Zhang et al. Jan 2007 B1
7168986 Peng Jan 2007 B1
7168987 Morohoshi et al. Jan 2007 B1
7175475 Hanley Feb 2007 B2
7178230 Tsai Feb 2007 B2
7192310 Chao et al. Mar 2007 B1
7211739 Brigham, Jr. et al. May 2007 B1
7223121 Moriyama et al. May 2007 B2
7223125 Chen May 2007 B2
7229317 Togami et al. Jun 2007 B2
7232316 Chen Jun 2007 B2
7232340 Hammond, Jr. et al. Jun 2007 B2
7238048 Olson et al. Jul 2007 B2
7238049 Wu et al. Jul 2007 B1
7238050 Sakakura et al. Jul 2007 B2
7241157 Zhuang et al. Jul 2007 B2
7249966 Long Jul 2007 B2
7249974 Gordon et al. Jul 2007 B2
7252549 Nishio et al. Aug 2007 B2
7258574 Barringer et al. Aug 2007 B2
7261592 Korsunsky et al. Aug 2007 B2
7264508 Sakakura et al. Sep 2007 B2
7267579 Wu Sep 2007 B1
7270570 Hamner et al. Sep 2007 B1
7273396 Itano Sep 2007 B2
7278885 Zhang Oct 2007 B1
7294024 Hammond, Jr. et al. Nov 2007 B2
7306487 Chang Dec 2007 B1
7309238 Yang Dec 2007 B2
7311556 Wan et al. Dec 2007 B2
7322854 Long et al. Jan 2008 B2
7341487 Wu Mar 2008 B2
7351098 Gladd et al. Apr 2008 B2
7351104 Neer et al. Apr 2008 B2
7351105 Delaney et al. Apr 2008 B2
7357673 Long Apr 2008 B2
7361063 Mullin et al. Apr 2008 B2
7364458 Ju Apr 2008 B1
7371118 Wu May 2008 B2
7384298 Caveney Jun 2008 B2
7387536 Wang Jun 2008 B2
7390220 Wu Jun 2008 B1
7404724 Miller Jul 2008 B1
7404739 Sheilds Jul 2008 B2
7410390 Watanabe et al. Aug 2008 B2
7416449 Kuo et al. Aug 2008 B2
7422481 Togami et al. Sep 2008 B2
7422482 Wang Sep 2008 B2
7435138 Liu et al. Oct 2008 B2
7435139 Yang Oct 2008 B2
7438596 Phillips Oct 2008 B2
7442082 Ma Oct 2008 B2
7445502 Zhang Nov 2008 B2
7445505 Yi Nov 2008 B1
7445506 Ma Nov 2008 B2
7455554 Long Nov 2008 B2
7462071 Wu Dec 2008 B1
7467974 Zhang Dec 2008 B2
7470150 Kuo et al. Dec 2008 B2
7473130 Weber et al. Jan 2009 B2
7473131 Dunwoody et al. Jan 2009 B2
7473135 Guo et al. Jan 2009 B1
7473136 Hu et al. Jan 2009 B2
7473139 Barringer et al. Jan 2009 B2
7479036 Briant et al. Jan 2009 B2
7485002 Nishide et al. Feb 2009 B2
7488212 Chen Feb 2009 B2
7497732 Yi Mar 2009 B2
7507120 Bright et al. Mar 2009 B1
7510438 Hammond, Jr. et al. Mar 2009 B2
7510439 Gordon et al. Mar 2009 B2
7524206 Gutierrez et al. Apr 2009 B2
7527525 Long et al. May 2009 B2
7530845 Yang May 2009 B1
7534141 Wu May 2009 B1
7534143 Tsao et al. May 2009 B1
7544068 Glaab, III et al. Jun 2009 B2
7547217 Lin Jun 2009 B1
7559799 Ma Jul 2009 B2
7559800 Wu Jul 2009 B2
7559802 Hu et al. Jul 2009 B2
7563125 Pepe Jul 2009 B2
7563136 Wu Jul 2009 B1
7566245 McColloch Jul 2009 B1
7568950 Belopolsky et al. Aug 2009 B2
7572145 Wu Aug 2009 B1
7572148 Pepe et al. Aug 2009 B1
7578700 Xiong et al. Aug 2009 B2
7588461 Tyler Sep 2009 B2
7597590 McColloch Oct 2009 B2
7604503 Hammond, Jr. et al. Oct 2009 B2
7607947 Ho Oct 2009 B1
7611358 Cox et al. Nov 2009 B2
7612299 Chen Nov 2009 B2
7614913 Ice Nov 2009 B2
7621772 Tobey Nov 2009 B1
7625235 Wu et al. Dec 2009 B2
7625236 Wu Dec 2009 B1
7625243 Chen et al. Dec 2009 B2
7632145 Lin et al. Dec 2009 B1
7632148 Kawamura et al. Dec 2009 B1
7641515 Szczesny et al. Jan 2010 B1
7641519 Chen Jan 2010 B1
7645165 Wu et al. Jan 2010 B2
7648390 Zhang et al. Jan 2010 B2
7651342 Wu Jan 2010 B1
7651372 Matsuzaki et al. Jan 2010 B2
7654831 Wu Feb 2010 B1
7654866 He et al. Feb 2010 B2
7666031 Kumamoto et al. Feb 2010 B2
7670179 Muller Mar 2010 B2
7677926 Huang Mar 2010 B1
7682195 Yuan et al. Mar 2010 B2
7695318 Wang et al. Apr 2010 B1
7704097 Phillips et al. Apr 2010 B1
7704098 Lambie et al. Apr 2010 B2
7717730 Wu May 2010 B2
7717744 Ma May 2010 B2
7717745 He et al. May 2010 B2
7722392 Lee et al. May 2010 B2
7722402 Pepe et al. May 2010 B2
7727018 Bright et al. Jun 2010 B2
7727019 Droesbeke et al. Jun 2010 B2
7731535 Wan et al. Jun 2010 B1
7731536 Okayasu Jun 2010 B2
7744413 Ma Jun 2010 B2
7744418 He et al. Jun 2010 B2
7748997 Hamner et al. Jul 2010 B2
7753689 Wu Jul 2010 B1
7753732 Kameyama et al. Jul 2010 B2
7753733 Kameyama et al. Jul 2010 B2
7753734 Eckel et al. Jul 2010 B2
7758380 Wang et al. Jul 2010 B2
7758383 Chantrell et al. Jul 2010 B1
7762840 Hamner et al. Jul 2010 B2
7762844 Ice Jul 2010 B2
7766688 Mateo Ferrus Aug 2010 B2
7771230 Hammond, Jr. et al. Aug 2010 B2
7771235 Kameyama Aug 2010 B2
7771236 Koyama et al. Aug 2010 B2
7780462 Consoli et al. Aug 2010 B2
7789706 Chen et al. Sep 2010 B2
7794277 Peng Sep 2010 B1
7794279 Ye et al. Sep 2010 B1
7798850 Sabo et al. Sep 2010 B2
7798853 Shi et al. Sep 2010 B2
7811127 Tsuzaki et al. Oct 2010 B2
7811132 Carpenter et al. Oct 2010 B2
7811133 Gray Oct 2010 B2
7824194 Suzuki et al. Nov 2010 B2
7824219 Wang Nov 2010 B2
7833056 Lee et al. Nov 2010 B1
7837507 Yang et al. Nov 2010 B1
7845961 Zhu et al. Dec 2010 B2
7845975 Cheng et al. Dec 2010 B2
7854630 Wang Dec 2010 B1
7857662 Gillespie et al. Dec 2010 B2
7862346 Wan et al. Jan 2011 B1
7862377 Shiu et al. Jan 2011 B2
7862378 Wan et al. Jan 2011 B1
7862379 Annecke Jan 2011 B2
7871297 Li Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7874865 Tobey Jan 2011 B2
7878855 Li Feb 2011 B2
7883372 Sun et al. Feb 2011 B1
7887370 Chen et al. Feb 2011 B2
7887376 Zhang et al. Feb 2011 B1
7892018 Tobey Feb 2011 B1
7892027 Mao et al. Feb 2011 B2
7892028 Wu Feb 2011 B2
7901221 Li et al. Mar 2011 B1
7909646 Feldman et al. Mar 2011 B2
7909647 Kawaguchi et al. Mar 2011 B2
7909654 He et al. Mar 2011 B2
7914328 Tanaka et al. Mar 2011 B2
7922533 Wang et al. Apr 2011 B2
7922534 Lin et al. Apr 2011 B2
7927145 Chang Apr 2011 B1
7928324 Moore Apr 2011 B2
7938683 Nagata May 2011 B2
7942704 Ko et al. May 2011 B2
7946893 Chen et al. May 2011 B2
7955132 Luo Jun 2011 B2
7955137 Ko et al. Jun 2011 B2
7959467 Sasser et al. Jun 2011 B2
7959469 Kawamura et al. Jun 2011 B2
7972150 Lin Jul 2011 B1
7997927 Wan et al. Aug 2011 B2
8002582 Fakhri et al. Aug 2011 B2
8007317 Su et al. Aug 2011 B2
8007318 Dunwoody et al. Aug 2011 B1
8011958 Guo et al. Sep 2011 B1
8011959 Tsai et al. Sep 2011 B1
8021188 Ma et al. Sep 2011 B1
8029319 Kameyama et al. Oct 2011 B2
8038475 Kameyama et al. Oct 2011 B2
8038480 Wei Oct 2011 B2
8052469 Mao et al. Nov 2011 B2
8052470 Lin Nov 2011 B1
8057258 Kawaguchi et al. Nov 2011 B2
8062066 Hsieh Nov 2011 B1
8062067 Shiu et al. Nov 2011 B2
8070517 Xiong et al. Dec 2011 B2
8075341 Su et al. Dec 2011 B2
8077887 Akino Dec 2011 B2
8079874 Lee et al. Dec 2011 B2
8083530 Kobayashi Dec 2011 B2
8096833 Tobey Jan 2012 B2
8096834 Lai et al. Jan 2012 B2
8100718 Li et al. Jan 2012 B2
8100720 Lin et al. Jan 2012 B2
8105110 Hsia et al. Jan 2012 B2
8109791 Kameyama et al. Feb 2012 B2
8113865 Yang et al. Feb 2012 B1
8113882 Chen Feb 2012 B1
8123559 Brown et al. Feb 2012 B2
8123560 McAlonis et al. Feb 2012 B2
8123562 Zhou et al. Feb 2012 B2
8137131 Wang et al. Mar 2012 B2
8142209 Zhu et al. Mar 2012 B2
8147272 Rhein Apr 2012 B2
8152569 Chen et al. Apr 2012 B2
8157593 Sim et al. Apr 2012 B1
8157599 Wei Apr 2012 B2
8167651 Glover et al. May 2012 B2
8167661 Straka May 2012 B2
8182287 Kondo May 2012 B2
8182288 Lin May 2012 B1
8182290 Fonteneau et al. May 2012 B2
8182291 Tsou May 2012 B2
8183470 Zhang et al. May 2012 B2
8187033 Feldman et al. May 2012 B2
8188381 Chan May 2012 B2
8192231 De Blieck et al. Jun 2012 B2
8202120 Ko Jun 2012 B2
8202122 Wu Jun 2012 B2
8202126 Lim Jun 2012 B2
8203084 Wertz, Jr. et al. Jun 2012 B2
8206161 Lan et al. Jun 2012 B1
8215989 Tamm et al. Jul 2012 B2
8221163 Kawakami et al. Jul 2012 B2
8251735 Wu Aug 2012 B2
8251746 Zhang et al. Aug 2012 B2
8251748 Tyler et al. Aug 2012 B2
8257114 Wang et al. Sep 2012 B2
8259457 Mills Sep 2012 B2
8262411 Kondo Sep 2012 B2
8267703 Yao et al. Sep 2012 B2
8277252 Fogg et al. Oct 2012 B2
8292637 Wu Oct 2012 B2
8298014 Li et al. Oct 2012 B2
8298016 Lai et al. Oct 2012 B2
8303343 Nagata Nov 2012 B2
8317544 Matsuoka et al. Nov 2012 B2
8328579 Sasaki et al. Dec 2012 B2
8333613 De Chazal et al. Dec 2012 B2
8333616 Su et al. Dec 2012 B2
8337238 Tobey et al. Dec 2012 B2
8337246 Zhang Dec 2012 B2
8342881 Lang et al. Jan 2013 B2
8342882 Zhang et al. Jan 2013 B2
8348699 Nagawatari et al. Jan 2013 B2
8348701 Lan et al. Jan 2013 B1
8353721 Deimel et al. Jan 2013 B2
8353722 Lan et al. Jan 2013 B1
8360808 Tsuchiya Jan 2013 B2
8366486 Lan et al. Feb 2013 B1
8371875 Gailus Feb 2013 B2
8376779 Metral et al. Feb 2013 B2
8382519 Lin et al. Feb 2013 B2
8382523 Lazaro, Jr. Feb 2013 B1
8388378 Ratzlaff et al. Mar 2013 B2
8388379 Sasaki et al. Mar 2013 B2
8398434 Davis et al. Mar 2013 B2
8403704 Marchetti et al. Mar 2013 B2
8414331 Chang Apr 2013 B2
8425240 Lee et al. Apr 2013 B2
8425257 Gao et al. Apr 2013 B2
8430691 Davis Apr 2013 B2
8435075 Lim et al. May 2013 B2
8439705 Zhang May 2013 B2
8439706 Sytsma et al. May 2013 B2
8444434 Davis et al. May 2013 B2
8444437 Szczesny et al. May 2013 B2
8449329 Schroll May 2013 B1
8449330 Schroll et al. May 2013 B1
8449331 Phillips et al. May 2013 B2
8460033 Regnier et al. Jun 2013 B2
8469744 Nichols et al. Jun 2013 B2
8475208 Simpson et al. Jul 2013 B2
8485844 Omae et al. Jul 2013 B2
8500490 Tsou Aug 2013 B2
8500493 Liu et al. Aug 2013 B2
8506332 Sommers et al. Aug 2013 B2
8512076 Zhang et al. Aug 2013 B2
8517765 Schroll et al. Aug 2013 B2
8535069 Zhang Sep 2013 B2
8535094 Youn et al. Sep 2013 B2
8545267 Fogg et al. Oct 2013 B2
8545268 Fogg et al. Oct 2013 B2
8562376 Chen Oct 2013 B2
8568173 Wu Oct 2013 B2
8574007 Smith et al. Nov 2013 B2
8579660 Chow et al. Nov 2013 B2
8579661 Zhang Nov 2013 B2
8632362 Straka Jan 2014 B2
8801455 Carreras Garcia Aug 2014 B2
20010006860 Nimura Jul 2001 A1
20010018293 Van Zanten Aug 2001 A1
20010049209 Casey et al. Dec 2001 A1
20020025722 Inagawa et al. Feb 2002 A1
20020039860 Shirai et al. Apr 2002 A1
20020098737 Koide et al. Jul 2002 A1
20020119702 Chen Aug 2002 A1
20020132524 Festag et al. Sep 2002 A1
20020142656 Chang Oct 2002 A1
20030022555 Vicich et al. Jan 2003 A1
20030054692 Pocrass Mar 2003 A1
20030060084 Aoki Mar 2003 A1
20030092319 Hung May 2003 A1
20030129877 Chen Jul 2003 A1
20030176111 Iida et al. Sep 2003 A1
20030203675 McDougall Oct 2003 A1
20040009704 Hsiao et al. Jan 2004 A1
20040097136 Flickinger et al. May 2004 A1
20040235349 Tanaka Nov 2004 A1
20050026500 Ji et al. Feb 2005 A1
20050026502 Wan et al. Feb 2005 A1
20050042922 Haller et al. Feb 2005 A1
20050142942 Hayashi Jun 2005 A1
20050221673 Myer et al. Oct 2005 A1
20050227537 Peng Oct 2005 A1
20060040554 Liu Feb 2006 A1
20060134995 Bolouri-Saransar Jun 2006 A1
20060166556 Hirata Jul 2006 A1
20070026736 Itano et al. Feb 2007 A1
20070087629 Liang Apr 2007 A1
20070099503 Konz May 2007 A1
20070117458 Winker et al. May 2007 A1
20070128937 Long et al. Jun 2007 A1
20070173120 Caveney et al. Jul 2007 A1
20070254517 Olson et al. Nov 2007 A1
20080014797 Yang Jan 2008 A1
20080045083 Metral et al. Feb 2008 A1
20080096422 Liao et al. Apr 2008 A1
20080102698 Chen May 2008 A1
20080139048 Tai et al. Jun 2008 A1
20080207052 Zhang Aug 2008 A1
20080207055 Buttner Aug 2008 A1
20080214049 Gump et al. Sep 2008 A1
20080214050 Ishizuka et al. Sep 2008 A1
20080233799 Winker et al. Sep 2008 A1
20080242149 Konno et al. Oct 2008 A1
20080254685 Murr et al. Oct 2008 A1
20080318476 Weber et al. Dec 2008 A1
20090023336 Kondo et al. Jan 2009 A1
20090023337 Chang Jan 2009 A1
20090023338 He et al. Jan 2009 A1
20090061683 Ball et al. Mar 2009 A1
20090068885 He Mar 2009 A1
20090111324 Hughes et al. Apr 2009 A1
20090124124 Huang et al. May 2009 A1
20090124136 Pepe et al. May 2009 A1
20090176408 Wu Jul 2009 A1
20090203256 Mathews Aug 2009 A1
20090215290 Zhu et al. Aug 2009 A1
20090215315 Cheng Aug 2009 A1
20090318023 Block et al. Dec 2009 A1
20100003852 Myer et al. Jan 2010 A1
20100040332 Van Den Meersschaut et al. Feb 2010 A1
20100041257 Beck et al. Feb 2010 A1
20100041274 Marti et al. Feb 2010 A1
20100048058 Morgan et al. Feb 2010 A1
20100087095 Hammond, Jr. et al. Apr 2010 A1
20100099300 Hsieh Apr 2010 A1
20100099301 Mulfinger et al. Apr 2010 A1
20100112859 Olawsky et al. May 2010 A1
20100112862 Chiu et al. May 2010 A1
20100151707 AbuGhazaleh et al. Jun 2010 A1
20100151732 Xu et al. Jun 2010 A1
20100167584 He Jul 2010 A1
20100178804 Long Jul 2010 A1
20100184329 Hou et al. Jul 2010 A1
20100210142 McGrath et al. Aug 2010 A1
20100227504 Wang et al. Sep 2010 A1
20100233891 Broeksteeg et al. Sep 2010 A1
20100267255 Mo Oct 2010 A1
20100330839 Su et al. Dec 2010 A1
20110009001 Chen et al. Jan 2011 A1
20110034067 Caveney et al. Feb 2011 A1
20110104945 Gao et al. May 2011 A1
20110151708 Kaneko et al. Jun 2011 A1
20110159732 Kondo et al. Jun 2011 A1
20110195592 McGrath et al. Aug 2011 A1
20110195593 McGrath et al. Aug 2011 A1
20110223805 Regnier et al. Sep 2011 A1
20110269341 He et al. Nov 2011 A1
20110281464 Hou Nov 2011 A1
20110281465 Hou Nov 2011 A1
20110306238 Yu et al. Dec 2011 A1
20110306239 Zhang et al. Dec 2011 A1
20110312212 Machado et al. Dec 2011 A1
20110318963 Kamoya et al. Dec 2011 A1
20120009811 He et al. Jan 2012 A1
20120015554 Tseng Jan 2012 A1
20120021636 Debenedictis et al. Jan 2012 A1
20120028501 Cheng Feb 2012 A1
20120058670 Regnier et al. Mar 2012 A1
20120129393 Peng May 2012 A1
20120129398 Droesbeke May 2012 A1
20120136929 Li et al. May 2012 A1
20120184139 Long Jul 2012 A1
20120196478 Zhang et al. Aug 2012 A1
20120196479 Chow et al. Aug 2012 A1
20120202380 Lappoehn Aug 2012 A1
20120214343 Buck et al. Aug 2012 A1
20120225583 Kamarauskas et al. Sep 2012 A1
20120250911 Tamm et al. Oct 2012 A1
20120252271 Pan Oct 2012 A1
20120276757 Matsuoka Nov 2012 A1
20120276776 Becker et al. Nov 2012 A1
20120282809 Banakis et al. Nov 2012 A1
20120295482 Wu Nov 2012 A1
20120302096 Ellison Nov 2012 A1
20120322306 Tai et al. Dec 2012 A1
20120329321 Scritzky et al. Dec 2012 A1
20130017724 Liu Jan 2013 A1
20130023132 Mills Jan 2013 A1
20130023154 Ii Jan 2013 A1
20130040491 Wu Feb 2013 A1
20130040492 Wu Feb 2013 A1
20130040493 Wu Feb 2013 A1
20130065437 Scritzky et al. Mar 2013 A1
20130065442 Nagata et al. Mar 2013 A1
20130072063 Qiao Mar 2013 A1
20130078871 Milbrand, Jr. Mar 2013 A1
20130084741 Pabst et al. Apr 2013 A1
20130084745 Siahaan et al. Apr 2013 A1
20130084746 Siahaan et al. Apr 2013 A1
20130102192 Davis Apr 2013 A1
20130130548 Wu et al. May 2013 A1
20130130549 Wu et al. May 2013 A1
20130149899 Schroll et al. Jun 2013 A1
20130149900 Zhang et al. Jun 2013 A1
20130149901 Lee et al. Jun 2013 A1
20130149902 Tsuchiya Jun 2013 A1
20130189876 Lang et al. Jul 2013 A1
20130189877 Lan et al. Jul 2013 A1
20130210273 Wu et al. Aug 2013 A1
20130224998 Feldstein et al. Aug 2013 A1
20130231005 Qiao et al. Sep 2013 A1
20130280955 Alden, III et al. Oct 2013 A1
20130288522 Ii Oct 2013 A1
20130288523 Ii Oct 2013 A1
20130288526 Rascon et al. Oct 2013 A1
Foreign Referenced Citations (5)
Number Date Country
0603667 Jun 1994 EP
1 093 190 Apr 2001 EP
0 800 238 Oct 2001 EP
10-0833802 May 2008 KR
WO 0215339 Feb 2002 WO
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion for Application No. PCT/US2015/027159 dated Aug. 5, 2015.
Extended European Search Report for European Application No. 15783879.8 dated Sep. 29, 2017, 9 pages.
Related Publications (1)
Number Date Country
20150311646 A1 Oct 2015 US
Provisional Applications (1)
Number Date Country
61982958 Apr 2014 US