Electrical connector with stress-distribution features

Information

  • Patent Grant
  • 7905731
  • Patent Number
    7,905,731
  • Date Filed
    Monday, May 21, 2007
    17 years ago
  • Date Issued
    Tuesday, March 15, 2011
    13 years ago
Abstract
A connector capable of being mounted onto a substrate is disclosed. Such a connector may include a housing, and a contact mounted within the housing. The contact may include a body, terminal pins extending from a first edge of the body, contact beams extending from a second edge of the body, and a flared portion. The edges of a first contact beam and a second contact beam of the contact beams may be positioned proximate respective adjacent surfaces of the housing. The flared portion may also be positioned proximate a respective adjacent surface of the housing. The relationship between the first contact beam and its respective adjacent surface, the relationship between the second contact beam and its respective adjacent surface, and the relationship between the flared portion and its respective surface may inhibit bowing of the body of the contact when the connector is mounted on the substrate.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related by subject matter to U.S. patent application Ser. No. 12/054,023 filed Mar. 24, 2008, and is also related by subject matter to U.S. patent application Ser. No. 12/109,750 filed Apr. 25, 2008.


FIELD OF THE INVENTION

Generally the invention relates to electrical connectors. More particularly the invention relates to power connectors.


BACKGROUND OF THE INVENTION

A Power connector for transmitting electrical power may be mounted onto a printed circuit board (“PCB”) using a press fit. The press fit application of the connector may generate some concerns about the contact deformation and damage to the housing, especially on a vertical receptacle or header connector. More particularly, if a large enough gap exists between the contact beams of the contacts and the interior walls of the housing, the middle portions of the press-fit tails may arc or bow away from the PCB during mounting of the connector onto the PCB.


For example, FIGS. 1A and 1B depict the relationship between a contact 10 and a housing 14 of a prior art connector. As depicted, the contact 10 has a body 16 and a plurality of contact beams 18 extending from a first edge 20 of the body 16. When the contact 10 is mounted in the housing 14, a large gap 24 exists between an edge 28 of a first contact beam 32 of the plurality of contact beams 18 and an upper sidewall 36 of the housing 14. Further, when the contact 10 is mounted in the housing 14, a large gap 40 exists between an edge 44 of a second contact beam 48 of the plurality of contact beams 18 and a lower sidewall 52 of the housing 14. When the press pins (not shown) of the contact 10 are pressed into a substrate (not shown), the body 16 of the contact 10 may arc or bow. A middle point 56 of the body 16 may displace about 0.246 mm due to the arcing or bowing of the contact 10. FIG. 1C depicts a bowed or arced contact 10. Because the body 16 is bowed, the contact beams 18 spread apart causing different sized gaps 58 between adjacent contact beams 18. Accordingly, a need exists for features that reduce or eliminate such arcing or bowing of the body 16 may be desired.


SUMMARY OF THE INVENTION

Disclosed herein is an electrical connector that may be capable of inhibiting bowing of the contacts of the connector when the connector is mounted on a substrate. Such a connector may include a housing and a contact mounted in the housing. The contact may include a body, a plurality of terminal pins extending from a first edge of the body and a plurality of contact beams extending from a second edge of the body. At least a portion of the edges of a first contact beam and of a second contact beam may be positioned proximate respective adjacent surfaces of the housing when the connector is not mounted on the substrate. Contact between the at least a portion of the edges of the first and second contact beams and their respective adjacent surfaces of the housing during mounting of the connector on the substrate may restrain the contact beams and may inhibit bowing of the body of the contact. The contact beams may be arranged in a substantially linear array and the first and second contact beams may be located at respective first and second ends of the substantially linear array.


In another embodiment of the connector, the body of the contact may include a flared portion. The flared portion may be positioned proximate an adjacent surface of the housing when the connector is not mounted on the substrate. Contact between the flared portion and the surface of the housing adjacent the flared portion during mounting of the connector on the substrate may inhibit bowing of the body of the contact.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a connector system depicting the relationship between a connector housing and a contact assembly found in the prior art.



FIG. 1B is a side view of the connector system of FIG. 1A.



FIG. 1C is a side view of the connector system of FIG. 1A depicting a bowed contact.



FIG. 2A is a front perspective view of an exemplary embodiment of a connector.



FIG. 2B is a back perspective view of the connector shown in FIG. 2A.



FIG. 3 is a perspective view of a contact.



FIG. 4 is a side view of a first half of a contact.



FIG. 5 is a partial bottom view of the first half of the contact of FIG. 4.



FIG. 6 is a perspective view of the first half of the contact of FIG. 4 positioned to combine with a second half of a contact.



FIG. 7 is a cut away view of an example embodiment of a connector depicting the relationship between a housing and the contact of FIG. 3.



FIG. 8 is a partial top view of the connector of claim 7 depicting the relationship between the flared portions of the contact of FIG. 3 and the housing.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS


FIGS. 2A and 2B depict an example embodiment of a connector 60 having several contacts 62 mounted in a housing 66. As illustrated the contacts 62 may include several terminal pins 72. Additionally, the connector 60 may include an array of signal contacts 76 located between the contacts 62. When the terminal pins 72 are press fit onto a substrate, the connector 60 may inhibit bowing of the contacts 62. The particular configuration of connector 60 shown, is disclosed for exemplary purposes only. For example, while the connector 60 is depicted with six contacts 62, the connector 60 is not limited to such a number, and may include any number of contacts 60. Furthermore, while the particular connector 60 depicted is a vertical receptacle connector, the connector 60 is not limited to such an embodiment, and may include other configurations.



FIG. 3 depicts an example embodiment of a contact 100 capable of being mounted in a connector housing. The contact 100 may be made from an electrically conductive material, such as metal. The contact 100 may be a power contact. As depicted, the contact 100 may include a first half 104 and a second half 106. While the contact 100 is depicted as comprising two halves, the contact 100 is not limited to such a design and may be manufactured as a single unitary structure.



FIGS. 4 and 5 are more detailed views of the first half 104 of the contact 100. As depicted, the first half 104 may include a body 116, a plurality of terminal pins 120 extending from a first edge 124 of the body 116, and a plurality of contact beams 128 extending from a second edge 132 of the body 116.


As depicted, the body 116 may include a thru hole 134, a dimple 136 and a flared portion 138. The thru hole 134 may be formed in a first end 139 of the body 116, and the dimple 136 may protrude from a second end 140 of the body 116. The first end 139 may be opposite to the second end 140. The function of the thru hole 134 and the dimple 136 is explained below in connection with FIG. 6.


The terminal pins 120 may be capable of being received by penetrations in a substrate (not shown). The terminal pins 120 may be eye-of-the-needle press-fit pins. As best shown in FIG. 5, the terminal pins 120 of the first half 104 may be offset by the flared portion 138. As depicted, the flared portion 138 of the first half 104 may flare out in a first direction from the body 116.


The contact beams 128 may each be designed to have a specific structure. For example, the first half 104 may include two angled contact beams 142 and three substantially straight contact beams 144. The angled contact beams 142 and the straight contact beams 144 may be arranged in a staggered or alternating manner, i.e. each angled contact beam 142 may be positioned adjacent to a straight contact beam 144. Furthermore, the angled contact beams 142 may include a flared portion 148 at a first end 152 of the contact beams 142. An example angle in which the angled beam 142 may be formed can be seen in FIG. 5. The first half 104 is not limited to five contact beams 128 as depicted, and may include any number of contact beams 128. Furthermore, the first half 104 is not limited to alternating angled beams 142 and straight beams 144. For example, the first half 104 may have all angled beams 142 or all straight beams 144.



FIG. 6 depicts the first half 104 and the second half 106 positioned to combine and form the contact 100. As depicted, the second half 106 may be identical to the first half 104 but may be rotated 180 degrees. Accordingly, like the first half 104, the second half 106 may have a body 216, a plurality of terminal pins 220 extending from a first edge 224 of the body 216, and a plurality of contact beams 228 extending from a second edge 232 of the body 216. In combination, the thru hole 134 of the first half 104 may receive a dimple 234 protruding from a first end 239 of the body 216 of the second half 106, and the dimple (not shown in FIG. 6) of the first half 104 may engage a thru hole 236 formed in a second end 240 of the body 216 of the second half 106.


The body 216 of the second half 106 may also include a flared portion 244. As depicted, the flared portion 244 may flare out from the body 216 of the second half 106. The flared portion 244 may flare out from the body 216 in a direction opposite of the flared portion 138 formed in the first half 104. That is, flared portion 244 may extend in one direction, while flared portion 138 may extend in the opposite direction.


The contact beams 228 of the second half 106 may also include angled contact beams 248 and straight contact beams 252. When the first half 104 is combined with the second half 106, the angled beams 142 of the first half 104 may align with the angled beams 248 of the second half 106. Similarly, the straight beams 144 of the first half 104 may align with the straight beams 252 of the second half 106. When the first half 104 and the second half 106 are combined, the combination may form a plurality of contact beam pairs 260 as depicted in FIG. 7.



FIG. 7 depicts contact 100 mounted in a housing 300. The housing 300 may be made from a dielectric material such as a plastic for example. As depicted, the housing 300 may have a first sidewall 304 and a second sidewall 308. When the contact 100 is mounted in the housing 300, an edge 312 of a first contact beam 316 of the plurality of contact beam pairs 260 may be positioned proximate the first sidewall 304. Additionally, when the contact 100 is mounted in the housing 300, an edge 320 of a second contact beam 324 of the plurality of contact beam pairs 260 may be positioned proximate the second sidewall 308. As depicted, the edge 312 of the first contact beam 316, and the edge 320 of the second contact beam 324 may abut the first and second sidewalls 304, 308 of the housing 300. Alternatively, the edge 312 of the first contact beam 316, and the edge 320 of the second contact beam 324 may define a gap (not shown) with the respective first and second sidewalls 304, 308. The gap defined between the edge 312 of the first contact beam 316 and the first sidewall 304 and the gap defined between the edge 320 of the second contact beam 324 and the second sidewall 308 may be up to about 2 thousandths of an inch wide. Increasing the gap may increase the probability of bowing. Accordingly, there is preferably no gap.


The terminal pins 120, 220 of the contact 100 may be pressed into a substrate (not shown). During insertion of the terminal pins 120, 220 into the substrate the relationship (i.e. close proximity of) between the edge 312 of the first contact beam 316 and the first sidewall 304, and the relationship (i.e. close proximity of) between the edge 320 of the second contact beam 324 and the second sidewall 308 may help inhibit bowing or arcing of the contact 100. For example, the relationship may limit the deflection of the contact beam pairs 260 in directions substantially perpendicular to the direction in which the contact beam pairs 260 extend. Inhibiting the bowing of the contact 100 may not only limit the deflection of the contact beam pairs 260 but may also create a substantially uniform distribution of stress during press-fit of the terminal pins 120, 220 onto the substrate.



FIG. 8 depicts the relationship between the flared portions 138, 244 and the housing 300. As depicted the housing 300 may include an aperture 330 having a first side wall 334 and a second sidewall 338. When the contact 100 is mounted in the housing 300, an edge 342 of the flared portion 138 of the first half 104 may be positioned proximate the first sidewall 334 of the aperture 330. Additionally, when the contact 100 is mounted in the housing 300, an edge 346 of the flared portion 244 of the second half 106 may be positioned proximate the second sidewall 338 of the aperture 330. As depicted, the edge 342 of the flared portion 138, and the edge 346 of the flared portion 244 may abut the first and second sidewalls 334, 338 of the aperture 330. Alternatively, the edge 342 of the flared portion 138, and the edge 346 of the flared portion 244 may define a gap (not shown) with the respective first and second sidewalls 334, 338 of the aperture 330. The gap defined between the edge 342 of the flared portion 138 and the first sidewall 334 and the gap defined between the edge 346 of the flared portion 244 and the second sidewall 338 may be up to about 2 thousandths of an inch wide. Increasing the gap may increase the probability of bowing. Accordingly, there is preferably no gap.


During insertion of the terminal pins 120, 220 into the substrate, the relationship (i.e. close proximity of) between the edge 342 of the flared portion 138 and the first sidewall 334, and the relationship (i.e. close proximity of) between the edge 346 of the flared portion 244 and the second sidewall 338 may further help inhibit bowing or arcing of the contact 100. Inhibiting the bowing of the contact 100, as noted above, may limit the deflection of the contact beam pairs 260 and may create a substantially uniform distribution of stress during press-fit of the terminal pins 120, 220 onto the substrate.


The foregoing description is provided for the purpose of explanation and is not to be construed as limiting the invention. While the invention has been described with reference to preferred embodiments or preferred methods, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Furthermore, although the invention has been described herein with reference to particular structure, methods, and embodiments, the invention is not intended to be limited to the particulars disclosed herein, as the invention extends to all structures, methods and uses that are within the scope of the appended claims. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the invention as described herein, and changes may be made without departing from the scope and spirit of the invention as defined by the appended claims.

Claims
  • 1. An electrical connector capable of being mounted on a substrate, the electrical connector comprising: a housing defining a housing surface; anda contact mounted in the housing, the contact comprising a body, a plurality of terminal pins extending from a first edge of the body and capable of being received by penetrations in the substrate, and a plurality of contact beams extending from a second edge of the body, wherein at least a portion of one of the contact beams is spaced from the housing surface by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate such that engagement between the at least a portion of one of the contact beams and the housing surface limits bowing of the contact as the terminal pins are press-fit mounted into the substrate.
  • 2. The electrical connector of claim 1, wherein the body includes a flared portion that is spaced from an adjacent surface of the housing by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate.
  • 3. The electrical connector of claim 1, wherein the housing defines a vertical receptacle housing.
  • 4. The electrical connector of claim 1, wherein the engagement between the at least a portion of one of the contact beams and the housing creates a substantially uniform distribution of stress along the terminal pins as the terminal pins are press-fit mounted into the substrate.
  • 5. The electrical connector of claim 1, wherein the contact comprises a first half and a second half separable from the first half.
  • 6. The electrical connector of claim 1, wherein the housing surface is a first housing surface, and the housing further comprises a second housing surface, and the one of the contact beams is a first contact beam, and contact the further comprises a second contact beam, and at least a portion of the second contact beam is spaced from the second housing surface by a gap of no more than 0.002 inch before the terminal pins are press-fit mounted into the substrate.
  • 7. The electrical connector of claim 6, wherein the contact beams are arranged in a substantially linear array and the first and second contact beams are located at respective first and second outer ends of the substantially linear array.
  • 8. The electrical connector of claim 6, wherein the at least a portion of the first and second contact beams abut the respective first and second housing surfaces when the electrical connector is not mounted on the substrate.
  • 9. The electrical connector of claim 6, wherein the contact beams extend substantially from the body in a first direction, and contact between the contact beams and the respective first and second housing surfaces limits deflection of the contact beams in directions substantially perpendicular to the first direction as the terminal pins are inserted into the penetrations in the substrate.
  • 10. The electrical connector as recited in claim 6, wherein engagement between the at least a portion of the second contact beam and the second housing surface further limits bowing of the contact as the terminal pins are press-fit into the substrate.
  • 11. An electrical connector capable of being mounted on a substrate, the electrical connector comprising: a housing defining a housing surface; anda contact mounted in the housing, the contact comprising a body, a plurality of terminal pins extending from a first edge of the body and capable of being received by penetrations in the substrate, and a plurality of contact beams extending from a second edge of the body, wherein the body includes a flared portion, the flared portion being spaced from the housing surface by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate such that the flared portion engages the housing surface to limit bowing of the contact as the terminal pins are press-fit mounted into the substrate.
  • 12. The electrical connector of claim 11, wherein the housing defines a vertical receptacle housing.
  • 13. The electrical connector of claim 11, wherein the flared portion abuts the respective adjacent surface of the housing when the electrical connector is not mounted on the substrate.
  • 14. The electrical connector of claim 11, wherein the contact comprises a first half and a second half separable from the first half.
  • 15. A method of restricting bowing in an electrical connector configured for connection to a substrate, the method comprising the steps of: providing a housing defining opposing first and housing surfaces; anddisposing a contact in the housing, wherein the contact includes a contact body having opposing first and second edges, a plurality of terminal pins extending from the first edge, and a plurality of contact beams extending from the second edge, such that first and second contact beams of the plurality of contact beams are spaced from the first and second housing surfaces, respectively, by a gap of no more than 0.002 inch;press-fitting the terminal pins into the substrate so as to mount the electrical connector onto the substrate; andduring the press-fitting step, causing the first and second contact beams to engage the first and second housing surfaces so as to limit bowing of the contact.
  • 16. The method as recited in claim 15, wherein the body includes a flared portion and the housing defines a third housing surface, and the positioning step further comprises spacing the flared portion from the third housing surface by a gap of no more than 0.002 inch.
  • 17. The method as recited in claim 15, wherein the first and second contact beams abut the respective first and second housing surfaces.
  • 18. An electrical connector capable of being mounted on a substrate, the electrical connector comprising: a housing defining a housing surface; anda contact mounted in the housing, the contact comprising a body, a plurality of terminal pins extending from a first edge of the body and capable of being received by penetrations in the substrate, and a plurality of contact beams extending from a second edge of the body,wherein at least one of the contact beams engages the housing surface as the terminal pins are press-fit into the substrate so as to cause each of the terminal pins to receive a substantially equal force as the terminal pins are press-fit mounted into the substrate.
  • 19. The electrical connector as recited in claim 18, wherein each body includes a flared portion that is spaced from an adjacent housing surface by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate.
  • 20. The electrical connector as recited in claim 19, wherein the flared portion abuts the adjacent housing surface when the electrical connector is not mounted on the substrate.
  • 21. The electrical connector as recited in claim 18, wherein an outer pair of contact beams of the plurality of contact beams each is spaced from respective adjacent housing surfaces by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate.
  • 22. The electrical connector as recited in claim 21, wherein the outer pair of contact beams of the plurality of contact beams each abuts the respective adjacent housing surfaces when the electrical connector is not mounted on the substrate.
  • 23. An electrical connector capable of being mounted on a substrate, the electrical connector comprising: a housing defining a housing surface; anda contact mounted in the housing, the contact comprising a body, a plurality of terminal pins extending from a first edge of the body and capable of being received by penetrations in the substrate, and a plurality of contact beams extending from a second edge of the body,wherein engagement between one of the contact beams and the housing causes the terminal pins to extend into the penetrations in the substrate at a substantially constant depth when the terminal pins are press-fit mounted into the substrate.
  • 24. The electrical connector as recited in claim 23, wherein each body includes a flared portion that is spaced from an adjacent housing surface by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate.
  • 25. The electrical connector as recited in claim 24, wherein the flared portion abuts the adjacent housing surface when the electrical connector is not mounted on the substrate.
  • 26. The electrical connector as recited in claim 23, wherein an outer pair of contact beams of the plurality of contact beams each is spaced from respective adjacent housing surfaces by a gap of no more than 0.002 inch when the electrical connector is not mounted on the substrate.
  • 27. The electrical connector as recited in claim 26, wherein the outer pair of contact beams of the plurality of contact beams each abuts the respective adjacent housing surfaces when the electrical connector is not mounted on the substrate.
US Referenced Citations (331)
Number Name Date Kind
318186 Hertzog May 1885 A
741052 Mahon Oct 1903 A
1477527 Raettig Dec 1923 A
2248675 Huppert Jul 1941 A
2430011 Gillentine Nov 1947 A
2759163 Ustin et al. Aug 1956 A
2762022 Benander et al. Sep 1956 A
2844644 Soule Jr. Jul 1958 A
3011143 Dean Nov 1961 A
3178669 Roberts Apr 1965 A
3208030 Evans et al. Sep 1965 A
3286220 Marley et al. Nov 1966 A
3411127 Adams Nov 1968 A
3420087 Hatfield et al. Jan 1969 A
3514740 Filson et al. May 1970 A
3538486 Shlesinger, Jr. Nov 1970 A
3634811 Teagno et al. Jan 1972 A
3669054 Desso et al. Jun 1972 A
3692994 Hirschmann et al. Sep 1972 A
3748633 Lundergan Jul 1973 A
3845451 Neidecker Oct 1974 A
3871015 Lin et al. Mar 1975 A
3942856 Mindheim et al. Mar 1976 A
3972580 Pemberton et al. Aug 1976 A
4070088 Vaden Jan 1978 A
4076362 Ichimura Feb 1978 A
4082407 Smorzaniuk et al. Apr 1978 A
4136919 Howard et al. Jan 1979 A
4159861 Anhalt Jul 1979 A
4217024 Aldridge et al. Aug 1980 A
4260212 Ritchie et al. Apr 1981 A
4288139 Cobaugh et al. Sep 1981 A
4371912 Guzik Feb 1983 A
4383724 Verhoeven May 1983 A
4402563 Sinclair Sep 1983 A
4403821 Zimmerman et al. Sep 1983 A
4473113 Whitfield et al. Sep 1984 A
4505529 Barkus Mar 1985 A
4533187 Kirkman Aug 1985 A
4536955 Gudgeon Aug 1985 A
4545610 Lakritz et al. Oct 1985 A
4552425 Billman Nov 1985 A
4560222 Dambach Dec 1985 A
4564259 Vandame Jan 1986 A
4596433 Oesterheld et al. Jun 1986 A
4685886 Denlinger et al. Aug 1987 A
4717360 Czaja Jan 1988 A
4767344 Noschese Aug 1988 A
4776803 Pretchel et al. Oct 1988 A
4782893 Thomas Nov 1988 A
4790763 Weber et al. Dec 1988 A
4815987 Kawano et al. Mar 1989 A
4818237 Weber Apr 1989 A
4820169 Weber et al. Apr 1989 A
4820182 Harwath et al. Apr 1989 A
4867713 Ozu et al. Sep 1989 A
4878611 LoVasco et al. Nov 1989 A
4881905 Demler, Jr. et al. Nov 1989 A
4900271 Colleran et al. Feb 1990 A
4907990 Bertho et al. Mar 1990 A
4915641 Miskin et al. Apr 1990 A
4956699 Ohashi Sep 1990 A
4963102 Gettig et al. Oct 1990 A
4965699 Jorden et al. Oct 1990 A
4973257 Lhotak Nov 1990 A
4973271 Ishizuka et al. Nov 1990 A
4974119 Martin Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4979074 Morley et al. Dec 1990 A
5016968 Hammond et al. May 1991 A
5024610 French et al. Jun 1991 A
5035639 Kilpatrick et al. Jul 1991 A
5046960 Fedder et al. Sep 1991 A
5052953 Weber Oct 1991 A
5066236 Broeksteeg Nov 1991 A
5077893 Mosquera et al. Jan 1992 A
5082459 Billman et al. Jan 1992 A
5094634 Dixon et al. Mar 1992 A
5104332 McCoy Apr 1992 A
5137959 Block et al. Aug 1992 A
5139426 Barkus et al. Aug 1992 A
5151056 McClune Sep 1992 A
5152700 Bogursky et al. Oct 1992 A
5174770 Sasaki et al. Dec 1992 A
5194480 Block et al. Mar 1993 A
5213868 Liberty et al. May 1993 A
5214308 Nishiguchi et al. May 1993 A
5238414 Yaegashi et al. Aug 1993 A
5254012 Wang Oct 1993 A
5274918 Reed Jan 1994 A
5276964 Anderson, Jr. et al. Jan 1994 A
5286212 Broeksteeg Feb 1994 A
5295843 Davis et al. Mar 1994 A
5298791 Liberty et al. Mar 1994 A
5302135 Lee Apr 1994 A
5321582 Casperson Jun 1994 A
5381314 Rudy, Jr. et al. Jan 1995 A
5400949 Hirvonen et al. Mar 1995 A
5427543 Dynia Jun 1995 A
5431578 Wayne Jul 1995 A
5457342 Herbst, II Oct 1995 A
5458426 Ito Oct 1995 A
5475922 Tamura et al. Dec 1995 A
5490040 Gavdenzi et al. Feb 1996 A
5511987 Shinchi Apr 1996 A
5512519 Hwang Apr 1996 A
5533915 Deans Jul 1996 A
5558542 O'Sullivan et al. Sep 1996 A
5564952 Davis et al. Oct 1996 A
5577928 Duclos Nov 1996 A
5582519 Buchter Dec 1996 A
5588859 Maurice Dec 1996 A
5590463 Feldman et al. Jan 1997 A
5609502 Thumma Mar 1997 A
5618187 Goto Apr 1997 A
5637008 Kozel Jun 1997 A
5643009 Dinkel et al. Jul 1997 A
5664968 Micklevicz Sep 1997 A
5664973 Emmert et al. Sep 1997 A
5667392 Kocher et al. Sep 1997 A
5691041 Frankeny et al. Nov 1997 A
5702255 Murphy et al. Dec 1997 A
5727963 LeMaster Mar 1998 A
5730609 Harwath Mar 1998 A
5741144 Elco et al. Apr 1998 A
5741161 Cahaly et al. Apr 1998 A
5742484 Gillette et al. Apr 1998 A
5743009 Matsui et al. Apr 1998 A
5745349 Lemke Apr 1998 A
5746608 Taylor May 1998 A
5749746 Tan et al. May 1998 A
5755595 Davis et al. May 1998 A
5772451 Dozier, II et al. Jun 1998 A
5782644 Kiat Jul 1998 A
5787971 Dodson Aug 1998 A
5795191 Preputnick et al. Aug 1998 A
5810607 Shih et al. Sep 1998 A
5817973 Elco et al. Oct 1998 A
5827094 Aizawa et al. Oct 1998 A
5831314 Wen Nov 1998 A
5857857 Fukuda Jan 1999 A
5874776 Kresge et al. Feb 1999 A
5876219 Taylor et al. Mar 1999 A
5876248 Brunker et al. Mar 1999 A
5882214 Hillbish et al. Mar 1999 A
5883782 Thurston et al. Mar 1999 A
5888884 Wojnarowski Mar 1999 A
5908333 Perino et al. Jun 1999 A
5919050 Kehley et al. Jul 1999 A
5930114 Kuzmin et al. Jul 1999 A
5955888 Frederickson et al. Sep 1999 A
5961355 Morlion et al. Oct 1999 A
5971817 Longueville Oct 1999 A
5975921 Shuey Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5980321 Cohen et al. Nov 1999 A
5984726 Wu Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
6012948 Wu Jan 2000 A
6036549 Wulff Mar 2000 A
6041498 Hillbish et al. Mar 2000 A
6050862 Ishii Apr 2000 A
6059170 Jimarez et al. May 2000 A
6066048 Lees May 2000 A
6068520 Winings et al. May 2000 A
6071152 Achammer et al. Jun 2000 A
6077130 Hughes et al. Jun 2000 A
6089878 Meng Jul 2000 A
6095827 Dutkowsky et al. Aug 2000 A
6123554 Ortega et al. Sep 2000 A
6125535 Chiou et al. Oct 2000 A
6139336 Olson Oct 2000 A
6146157 Lenoir et al. Nov 2000 A
6146202 Ramey et al. Nov 2000 A
6146203 Elco et al. Nov 2000 A
6152756 Huang et al. Nov 2000 A
6174198 Wu et al. Jan 2001 B1
6180891 Murdeshwar Jan 2001 B1
6183287 Po Feb 2001 B1
6183301 Paagman Feb 2001 B1
6190213 Reichart et al. Feb 2001 B1
6196871 Szu Mar 2001 B1
6202916 Updike et al. Mar 2001 B1
6206722 Ko et al. Mar 2001 B1
6210197 Yu Apr 2001 B1
6210240 Comerci et al. Apr 2001 B1
6212755 Shimada et al. Apr 2001 B1
6215180 Chen et al. Apr 2001 B1
6219913 Uchiyama Apr 2001 B1
6220884 Lin Apr 2001 B1
6220895 Lin Apr 2001 B1
6220896 Bertoncini et al. Apr 2001 B1
6234851 Phillips May 2001 B1
6238225 Middlehurst et al. May 2001 B1
6257478 Straub Jul 2001 B1
6259039 Chroneos, Jr. et al. Jul 2001 B1
6261132 Koseki et al. Jul 2001 B1
6269539 Takahashi et al. Aug 2001 B1
6274474 Caletka et al. Aug 2001 B1
6280230 Takase et al. Aug 2001 B1
6293827 Stokoe et al. Sep 2001 B1
6299492 Pierini et al. Oct 2001 B1
6309245 Sweeney Oct 2001 B1
6319075 Clark et al. Nov 2001 B1
6322377 Middlehurst et al. Nov 2001 B2
6328602 Yamasaki et al. Dec 2001 B1
6347952 Hasegawa et al. Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6359783 Noble Mar 2002 B1
6360940 Bolde et al. Mar 2002 B1
6362961 Chiou Mar 2002 B1
6363607 Chen et al. Apr 2002 B1
6371773 Crofoot et al. Apr 2002 B1
6379188 Cohen et al. Apr 2002 B1
6386924 Long May 2002 B2
6394818 Smalley, Jr. May 2002 B1
6402566 Middlehurst et al. Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6428328 Haba et al. Aug 2002 B2
6431914 Billman Aug 2002 B1
6435914 Billman Aug 2002 B1
6450829 Weisz-Margulescu Sep 2002 B1
6461183 Ohkita et al. Oct 2002 B1
6461202 Kline Oct 2002 B2
6471523 Shuey Oct 2002 B1
6471548 Bertoncini et al. Oct 2002 B2
6472474 Burkhardt et al. Oct 2002 B2
6488549 Weller et al. Dec 2002 B1
6489567 Zachrai Dec 2002 B2
6506081 Blanchfield et al. Jan 2003 B2
6514103 Pape et al. Feb 2003 B2
6537111 Brammer et al. Mar 2003 B2
6544046 Hahn et al. Apr 2003 B1
6551112 Li et al. Apr 2003 B1
6554647 Cohen et al. Apr 2003 B1
6572410 Volstorf et al. Jun 2003 B1
6575774 Ling et al. Jun 2003 B2
6575776 Conner et al. Jun 2003 B1
6592381 Cohen et al. Jul 2003 B2
6604967 Middlehurst et al. Aug 2003 B2
6629854 Murakami Oct 2003 B2
6652318 Winings et al. Nov 2003 B1
6663426 Hasircoglu et al. Dec 2003 B2
6665189 Lebo Dec 2003 B1
6669514 Weibking et al. Dec 2003 B2
6672884 Toh et al. Jan 2004 B1
6672907 Azuma Jan 2004 B2
6692272 Lemke et al. Feb 2004 B2
6702594 Lee et al. Mar 2004 B2
6705902 Yi et al. Mar 2004 B1
6712621 Li et al. Mar 2004 B2
6716068 Wu Apr 2004 B2
6740820 Cheng May 2004 B2
6743037 Kassa et al. Jun 2004 B2
6746278 Nelson et al. Jun 2004 B2
6769883 Brid et al. Aug 2004 B2
6769935 Stokoe et al. Aug 2004 B2
6776635 Blanchfield et al. Aug 2004 B2
6776649 Pape et al. Aug 2004 B2
6780027 Allison Aug 2004 B2
6790088 Ono et al. Sep 2004 B2
6796831 Yasufuku et al. Sep 2004 B1
6810783 Larose Nov 2004 B1
6811440 Rothermel et al. Nov 2004 B1
6814590 Minich et al. Nov 2004 B2
6829143 Russell et al. Dec 2004 B2
6835103 Middlehurst et al. Dec 2004 B2
6843687 McGowan et al. Jan 2005 B2
6848886 Schmaling et al. Feb 2005 B2
6848950 Allison et al. Feb 2005 B2
6848953 Schell et al. Feb 2005 B2
6869294 Clark et al. Mar 2005 B2
6884117 Korsunsky et al. Apr 2005 B2
6890221 Wagner May 2005 B2
6905367 Crane, Jr. et al. Jun 2005 B2
6929504 Ling et al. Aug 2005 B2
6947012 Aisenbrey Sep 2005 B2
6975511 Lebo et al. Dec 2005 B1
6994569 Minich et al. Feb 2006 B2
7001189 McGowan et al. Feb 2006 B1
7059892 Trout Jun 2006 B1
7059919 Clark et al. Jun 2006 B2
7065871 Minich et al. Jun 2006 B2
7070464 Clark et al. Jul 2006 B2
7074096 Copper et al. Jul 2006 B2
7097465 Korsunsky et al. Aug 2006 B1
7101228 Hammer et al. Sep 2006 B2
7104812 Bogiel et al. Sep 2006 B1
7114963 Shuey et al. Oct 2006 B2
RE39380 Davis Nov 2006 E
7137848 Trout et al. Nov 2006 B1
7168963 Minich et al. Jan 2007 B2
7182642 Ngo et al. Feb 2007 B2
7204699 Stoner Apr 2007 B2
D542736 Riku May 2007 S
7220141 Daily et al. May 2007 B2
7258562 Daily et al. Aug 2007 B2
7273382 Igarashi et al. Sep 2007 B2
7303427 Swain Dec 2007 B2
7335043 Hgo et al. Feb 2008 B2
7374461 van der Steen May 2008 B2
7384289 Minich Jun 2008 B2
7425145 Ngo Sep 2008 B2
7458839 Ngo Dec 2008 B2
7476108 Swain et al. Jan 2009 B2
20010003685 Aritani Jun 2001 A1
20010049229 Pape et al. Dec 2001 A1
20020106930 Pape et al. Aug 2002 A1
20020142676 Hosaka et al. Oct 2002 A1
20020159235 Miller et al. Oct 2002 A1
20020193019 Blanchfield et al. Dec 2002 A1
20030013330 Takeuchi Jan 2003 A1
20030119378 Avery Jun 2003 A1
20030143894 Kline et al. Jul 2003 A1
20030219999 Minich et al. Nov 2003 A1
20030220021 Whiteman, Jr. et al. Nov 2003 A1
20030236035 Kuroda et al. Dec 2003 A1
20040147177 Wagner Jul 2004 A1
20040183094 Caletka et al. Sep 2004 A1
20050112952 Wang et al. May 2005 A1
20060003620 Daily et al. Jan 2006 A1
20060128197 McGowan et al. Jun 2006 A1
20060228927 Daily Oct 2006 A1
20060228948 Swain Oct 2006 A1
20060281354 Ngo et al. Dec 2006 A1
20070197063 Ngo Aug 2007 A1
20070202748 Daily Aug 2007 A1
20070275586 Ngo Nov 2007 A1
20070293084 Ngo Dec 2007 A1
20080038956 Swain Feb 2008 A1
20080248670 Daily et al. Oct 2008 A1
Foreign Referenced Citations (34)
Number Date Country
1 665 181 Apr 1974 DE
102 26 279 Nov 2003 DE
0 273 683 Jul 1988 EP
0 321 257 Apr 1993 EP
0 623 248 Nov 1995 EP
0 789 422 Aug 1997 EP
1091449 Sep 2004 EP
1 162 705 Aug 1969 GB
05344728 Dec 1993 JP
06068943 Mar 1994 JP
06-236788 Aug 1994 JP
07-114958 May 1995 JP
07169523 Jul 1995 JP
08096918 Apr 1996 JP
0 812 5379 May 1996 JP
09199215 Jul 1997 JP
2000-003743 Jan 2000 JP
2000-003744 Jan 2000 JP
2000-003745 Jan 2000 JP
2000-003746 Jan 2000 JP
13135388 May 2001 JP
2003217785 Jul 2003 JP
100517561 Sep 2005 KR
576555 Aug 1990 TW
546872 Aug 2003 TW
WO 9743885 Nov 1997 WO
WO 9744859 Nov 1997 WO
WO 9815989 Apr 1998 WO
WO 0016445 Mar 2000 WO
WO 0129931 Apr 2001 WO
WO 0139332 May 2001 WO
WO 02103847 Dec 2002 WO
WO2005065254 Jul 2005 WO
WO 2007064632 Jun 2007 WO
Related Publications (1)
Number Date Country
20080293267 A1 Nov 2008 US