Electrical connectors are often used to mate signal-carrying cables with input or output ports. Electrical connectors may be designed or configured to be easily attachable or detachable.
In one aspect, the present disclosure relates to an elongated electrical connector for mounting on a printed circuit board and mating with a mating connector along a mating direction, where the connector includes an elongated base extending along a longitudinal direction perpendicular to the mating direction, first and second end walls extending forwardly along the mating direction from opposite longitudinal ends of the base, coplanar first and second tongues extending forwardly along the mating direction from the base and defining a gap therebetween, a plurality of spaced apart parallel passageways on a top surface of the first and second tongues oriented along the mating direction, each passageway extending through the base, a plurality of spaced apart inverted T-shaped through channels defined in the base, each inverted T-shaped through channel comprising a wider bottom member aligned with a corresponding passageway and a narrower vertical member, the bottom member and the passageway, in combination, defining a retaining cavity in the base, and a plurality of contacts. Each contact includes a contact member disposed in a corresponding passageway for making contact with a corresponding contact of a mating connector; a retaining member extending from the contact member and secured in a corresponding retaining cavity, the retaining member being exposed to the narrower vertical member of the through channel corresponding to the retaining cavity, and a mounting member extending from the retaining member beyond a back surface of the base for mounting on a printed circuit board. In some embodiments, each of the first and second tongues has a side wall separating the tongue from the gap. In some embodiments, the elongated base and each of the first and second end walls define an opening between the base and the end wall extending from a front surface to a back surface of the base.
In another aspect, the present disclosure relates to an elongated electrical connector for mounting on a printed circuit board and mating with a mating connector along a mating direction, where the connector includes an elongated base extending along a longitudinal direction perpendicular to the mating direction, first and second end walls extending forwardly along the mating direction from opposite longitudinal ends of the base, coplanar first and second tongues extending forwardly along the mating direction from the base and defining a gap therebetween, a plurality of spaced apart contacts oriented along the mating direction, each contact disposed in a corresponding passageway formed on a major surface of the first and second tongues, and a plurality of spaced apart parallel ribs oriented along the longitudinal direction formed in a portion of the elongated base corresponding to the gap. In some embodiments, each rib in the plurality of spaced apart parallel ribs is confined to the portion of the elongated base corresponding to the gap. In some embodiments, the plurality of spaced apart parallel ribs define a plurality of spaced part parallel channels formed in the portion of the elongated base corresponding to the gap, each channel extending only partially along the mating direction into the elongated base.
In some embodiments, the electrical connector further includes a L-shaped support extending rearwardly along the mating direction from a back surface of the elongated base, the support having a longer arm oriented along the mating direction and a shorter arm oriented along a transverse direction perpendicular to the longitudinal and mating directions, such that when the elongated electrical connector is mounted on a printed circuit board, the longer arm is parallel to and spaced apart from the printed circuit board and the shorter arm rests on the printed circuit board. In some embodiments, the longer arm defines a channel formed on a bottom major surface of the longer arm. In some embodiments, the longer arm is connected to the shorter arm via a substantially curved joining portion. In some embodiments, the longer arm is connected to the shorter arm via a substantially straight joining portion.
In yet another aspect, the present disclosure relates to an elongated electrical connector for mounting on a printed circuit board and mating with a mating connector along a mating direction, the connector including an elongated base extending along a longitudinal direction perpendicular to the mating direction, first and second end walls extending forwardly along the mating direction from opposite longitudinal ends of the base, coplanar first and second tongues extending forwardly along the mating direction from the base and defining a gap therebetween, a plurality of spaced apart contacts oriented along the mating direction, each contact disposed in a corresponding passageway. Each contact includes a front member extending along the mating direction and disposed in a corresponding passageway formed on a top major surface of the first and second tongues for making contact with a corresponding contact of a mating connector, a rear member parallel to the front member and extending away from the elongated base for mounting on a printed circuit board, and a middle member having a generally inverted U-shape joining the front and rear members. The middle member includes a first leg portion extending upwardly from the front member, a base portion extending from the first leg portion along the mating direction and away from the elongated base, and a second leg portion extending downwardly from the base portion and joining the base portion to the rear member, the front member being below the rear member. In some embodiments the electrical connector further includes a plurality of spaced apart parallel co-planar protrusions extending rearwardly from a backside of the elongated base, at least a portion of the middle member of each contact being disposed between two neighboring protrusions. In some embodiments, the protrusions are chamfered. In some embodiments, the front member of the spaced apart contacts extends vertically beyond a top surface of either first or second tongues.
In another aspect, the present disclosure relates to an electrical connector. The electrical connector includes a unitary housing elongated along a horizontal direction perpendicular to a mating direction of the connector—the unitary housing comprising an elongated base, opposing end walls and opposing top and bottom walls extending forwardly from the base along the mating direction and defining first and second L-shaped central slots therebetween separated by a middle wall, each L-shaped central slot comprising a longer horizontal slot portion and a shorter vertical slot portion adjacent the middle wall—a plurality of spaced apart contacts oriented along the mating direction, where each contact includes a flexible contact member disposed in a corresponding passageway formed in a top wall of the longer horizontal slot portions of the first and second central slots for making contact with a corresponding contact of a mating connector, a retaining member extending from the flexible contact member and secured in the top wall, and a mounting member extending downwardly from the retaining member along a back surface of the base for mounting on a printed circuit board, and the electrical connector further includes a plurality of spaced apart parallel co-planar protrusions extending rearwardly from a bottom of the backside of the elongated base, a portion of the mounting member of each contact being disposed between two neighboring protrusions. In some embodiments, the electrical connector further includes at least one engaging protrusion protruding upwardly from the bottom wall into each of the first and second central slots for engaging a corresponding recess defined in a bottom surface of a tongue of a mating connector. In some embodiments, the engaging protrusion has an asymmetric shape. In some embodiments, the engaging protrusion has a symmetric shape. In some embodiments, the flexible contact member of the contacts extends at least partially downward from the retaining member. In some embodiments, the flexible contact member of the contacts has a generally V-shape.
In yet another aspect, the present disclosure relates to an elongated electrical connector for mounting on a printed circuit board and mating with a mating connector along a mating direction, the connector including an elongated base extending along a longitudinal direction perpendicular to the mating direction, first and second end walls extending forwardly along the mating direction from opposite longitudinal ends of the base, a bottom tongue extending forwardly along the mating direction from the base and disposed between and spaced apart from the first and second end walls, the bottom tongue having a uniform thickness along its length along the longitudinal direction and comprising first and second bottom tongue portions separated by a third bottom tongue portion, a top tongue having a front portion extending forwardly along the mating direction from the base and a rear portion extending rearwardly along the mating direction from the base, the top tongue disposed between and spaced apart from the first and second end walls, the top tongue having a uniform thickness along its length along the longitudinal direction and being spaced apart from the bottom tongue along a thickness direction perpendicular to the mating and longitudinal directions, a bottom surface of the front portion of the top tongue facing a top face of the third bottom tongue portion, a plurality of spaced apart first contacts disposed on a top surface of the first bottom tongue portion, a plurality of spaced apart second contacts disposed on a top surface of the second bottom tongue portion, a plurality of spaced apart third contacts disposed on a bottom surface of the bottom tongue; and a plurality of spaced apart fourth contacts. Each fourth contact includes a front member extending along the mating direction and disposed in a corresponding passageway formed on a top surface of the front portion of the top tongue for making contact with a corresponding contact of a mating connector, a rear member extending from rear portion of the top tongue for mounting on a printed circuit board, and a middle member joining the front and rear members and being embedded in the rear portion of the top tongue. In some embodiments, the rear portion of the top tongue includes a plurality of spaced apart co-planar protrusions, the protrusions disposed such that the rear members of the fourth contacts are disposed between two neighboring protrusions.
In yet another aspect, the present disclosure relates to an elongated electrical connector for mating with a mating connector along a mating direction, the connector including a circuit board including a plurality of spaced apart first contact pads disposed in a first region near a front edge of the circuit board, a plurality of spaced apart second contact pads disposed in a second region near the front edge of the circuit board, the first and second regions defining a third region therebetween near the front edge of the circuit board, where the first, second and third regions forming a bottom mating tongue of the connector, each first and second contact pad configured to make contact with a corresponding contact of a mating connector, a plurality of spaced apart third contact pads disposed in a fourth region between the first and second regions and behind the third region, an elongated base extending along a longitudinal direction perpendicular to the mating direction attached to the circuit board, such that the first and second pluralities of contact pads are on a front side of the elongated base and the third plurality of contact pads is on a rear side of the elongated base, a top mating tongue extending forwardly along the mating direction from the elongated base between the first and second end walls, the top mating tongue being disposed in the third region between the first and second regions, and a plurality of spaced apart contacts. Each contact includes a front member extending along the mating direction and disposed in a corresponding passageway formed on a top surface of the top mating tongue for making contact with a corresponding contact of a mating connector and a rear member extending rearwardly from the elongated base and making contact with a corresponding third contact pad. In some embodiments, the at least a portion of the plurality spaced apart contacts is embedded within the elongated base. In some embodiments, substantially all of the rear members of the plurality of spaced apart contacts are embedded within the elongated base. In some embodiments, the third region has no contact pads.
In another aspect, the present disclosure relates to a connector assembly. The connector assembly includes an elongated electrical connector for mounting on a printed circuit board and mating with a mating connector along a mating direction, the connector including an elongated base extending along a longitudinal direction perpendicular to the mating direction, first and second end walls extending forwardly along the mating direction from opposite longitudinal ends of the base, a middle wall extending forwardly along the mating direction from a middle of the base, the middle wall disposed between the first and second end walls, a first tongue extending forwardly along the mating direction from the base and disposed between and spaced apart from the first end wall and the middle wall, the first tongue having a uniform thickness along its length along the longitudinal direction, a second tongue extending forwardly along the mating direction from the base and disposed between and spaced apart from the second end wall and the middle wall, the second tongue comprising thinner first and second tongue portions separated by a thicker third tongue portion, a plurality of spaced apart first contacts disposed on a top surface of the first tongue, a plurality of spaced apart second contacts disposed on a top surface of the first tongue portion of the second tongue, a plurality of spaced apart third contacts disposed on a top surface of the second tongue portion of the second tongue, and a cable assembly. The cable assembly includes a housing surrounding the first tongue, a plurality of spaced apart fourth contacts disposed in the housing—each fourth contact having a generally U-shape and including a first leg portion extending horizontally and contacting a corresponding first contact, a second leg portion extending horizontally above the first leg portion, and a base portion joining the first and second leg portions—and a plurality of conductive wires, each wire contacting a corresponding second leg portion. In some embodiments, the cable assembly further comprises an overmold encapsulating at least contact points between corresponding wires and second leg portions. In some embodiments, the overmold includes a thermally curable material. In some embodiments, the overmold includes a ultraviolet curable material. In some embodiments, the first leg portion includes a proximate end proximate the base portion and a distal end not proximate the base portion, and a lowest point of the first leg portion is substantially centered between the proximate end and the distal end. In some embodiments, the plurality of conductive wires of the cable assembly are shared with another cable assembly.
Connector plug 100, and more specifically, elongated base 110, end walls 120, first tongue 130, second tongue 132, rib 136, and side walls 134 may have any suitable dimensions and may be formed from any suitable material. In some embodiments, connector plug 100 and its constituent components may be all made from the same material. In some embodiments, the non-conductive components of the connector plug may be made out of an injection moldable material, such as plastic. In some embodiments, the connector plug may be formed at least in part through a rapid prototyping process, such as additive 3D printing. The specific choice of plastic or other material may depend on the desired application, and may take into account moldability, flexibility, durability, heat and melt resistance, resistivity, impedance, thermal expansion, density, weight, or any other electrical or physical characteristic.
Elongated base 110 extends in a longitudinal direction, perpendicular to a mating direction, and may substantially define a width of connector plug 100. In some embodiments, elongated base 110 may include one or more holes for mounting upon a printed circuit board or other surface. Elongated base 110 may include suitable features to reinforce points where it may be susceptible to physical failure. Elongated base 110 may be any suitable shape, potentially including one or more curved sections or features.
End walls 120 may be a unitary part of elongated base 110 or the end walls may be formed from a separate material or may be attached or adhered to elongated base 110 after forming. End walls 120 may provide physical stability or bend and warp resistance or may facilitate the mating of connector plug 100 with a corresponding socket or help secure and stabilize the plug and socket once mated.
Between end walls 120 are first tongue 130 and second tongue 132, with gap 131 between the two tongues and delimited by side walls 134. First tongue 130 and second tongue 132 may be coplanar and extend forwardly along a mating direction from the elongated base. In some embodiments, first tongue 130 and second tongue 132 may be the same size or symmetrically arranged. In some embodiments, they may be asymmetrically arranged and sized. In some embodiments, the respective sizes of first tongue 130 and second tongue 132 depend on the number or sizes of contacts desired or required depending on the connector type or configuration. Side walls 134 separate first tongue 130 and second tongue 132 both from each other and also from the intermediate gap 131.
Side walls 134 may be any suitable height and may extend along some, most, or all of the height of elongated base 110 or connector plug 100 as a whole. Side walls 134 may have any suitable thickness and may have a beveled or chamfered end. The chamfering may allow for easier insertion into a corresponding socket. For many of the features described herein, the dimensions configuration of parts may largely be based on standardized connector shapes, which may limit the degree of design flexibility possible with respect to certain aspects of the connector plug. Such design requirements, however, should be well known or easily accessible to those skilled in the art. Within gap 131 may be one or more of rib 136. Rib 136 extends forwardly in a mating direction from elongated base 110 and may provide reinforcement of the otherwise potentially structurally weaker gap 131. Any number of parallel ribs may be used, and they may extend across all or some of gap 131. In some embodiments, some of the ribs may extend different lengths from elongated base 110.
A plurality of contacts are disposed on the tongues of elongated base 110. More specifically, contact members 150 which are designed or configured to make contact with a corresponding contact of a mating connector are disposed within passageways, which are described and illustrated in more detail in conjunction with
Cable 1430 includes conductors 1432 and drain wire 1434, insulation 1436, and jacket 1438. In some embodiments, cable 1430 may be a flat or substantially flat ribbon cable. Conductors 1432 can include or be formed from any suitable electrically conductive material, and may be selected for its electrical or physical properties, for example, conductivity, coefficient of thermal expansion, malleability, or ductility. Suitable materials include copper, aluminum, and silver. Drain wire 1434 may have similar characteristics or be formed from a similar material as conductors 1432, or it may have different dimensions or composition. Insulation 1436 can include any suitable dielectric material for insulating conductor 1432 and may be selected for flexibility, melting point, dielectric constant, or any other physical or electrical property or properties. Suitable materials include polyethylene, polyethylene foam, or polytetrafluoroethylene. The materials for both conductors 1432 and insulation 1436 may be selected to give an overall nominal characteristic impedance within a desired range. Drain wire 1434 may be uninsulated. In some embodiments, the front portions or ends of conductors 1432 or drain wire 1434 may be coined or plated (for example, with gold) to improve contact or conductivity. Conductors and drain wires may be any suitable wire gauge.
Jacket 1438 may be any suitable material to impart desirable external properties on cable 1430, such as abrasion or fire-resistance. In some embodiments, a flexible material may be selected to preserve desired physical properties of cable 1430. Jacket 1438 may also be thick to prevent damage or wear to the internal conductors 1432 associated with use. In some embodiments, jacket 1438 may also include one or more conductive layers along the interior perimeter of jacket 1438, such as a braided copper layer or silver plating. Conductive layers may help prevent electromagnetic fields within the cable from radiating into the external environment or from interfering with nearby electronic components, and may prevent external electromagnetic fields from interfering with the conductors and drain wires in the cable. In some embodiments, jacket 1438 may be formed from a polymeric material.
Overmold 1428 may be attached to or disposed on a top surface of housing 1422 and may encapsulate at least the contact points between wires (conductors 1432 and drain wires 1434) and the fourth contacts 1424 (more specifically at second leg portion 1426). Overmold 1428 may either be a separately and later formed injection molded part, is overmold 1428 may be cured in place after the contact between fourth contacts 1424 and conductors 1432 is made. In some embodiments, overmold 1428 may be configured to be nonremovable. In some embodiments, overmold 1428 may snap or press into place and be removable. Overmold 1428 may be designed to prevent cable 1430 from disconnecting from cable assembly 1420. Overmold 1428 may be made from any suitable material, including thermoplastic and UV curable polymers. In some embodiments, overmold 1428 may cover substantially all of the top surface of cable assembly 1420. Note that per
Descriptions for elements in figures should be understood to apply equally to corresponding elements in other figures, unless indicated otherwise. The present invention should not be considered limited to the particular embodiments described above, as such embodiments are described in detail in order to facilitate explanation of various aspects of the invention. Rather, the present invention should be understood to cover all aspects of the invention, including various modifications, equivalent processes, and alternative devices falling within the scope of the invention as defined by the appended claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
62011754 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15312283 | Nov 2016 | US |
Child | 16153886 | US |