1. Field of the Invention
The invention relates to an electrical connector and, more particularly, to tap or splice electrical connector.
2. Brief Description of Prior Developments
U.S. Pat. No. 1,278,785 discloses a cable clamp with two clamp sections which are longitudinally slid together to wedge cables in a clamping grip. U.S. Pat. No. 7,247,061 discloses a wedge inserted between two C shaped members to clamp two conductors together.
The following summary is merely intended to be exemplary. The summary is not intended to limit the scope of the claimed invention.
In accordance with one aspect of the invention, an electrical connector element is provided including a first second and a second section. The first section has a general hook shape with a first conductor contact surface on an inward facing surface of the general hook shape. The second section is integrally formed with the first section. The second section has a first side forming a second conductor contact surface and an opposite second side. The second side faces the first conductor contact surface. The second side is sized and shaped to slidably interlock directly with another electrical connector element. The second side has at least one wedging surface.
In accordance with another aspect of the invention, An electrical connector assembly comprising a first one-piece member and a second one piece member. The first one-piece member comprising a first hook shaped section and a first wedging interlock section. The first hook shaped section has a first conductor contact surface on an inward facing side. The first wedging interlock section is located opposite the first conductor contact surface. The first wedging interlock section comprises a second conductor contact surface on an outward facing side of the first wedging interlock section. The second one-piece member comprises a second hook shaped section having a first conductor contact surface on an inward facing side; and a second wedging interlock section located opposite the first conductor contact surface of the second hook shaped section. The second wedging interlock section comprises a second conductor contact surface on an outward facing side of the second wedging interlock section. The second wedging interlock section is directly slidably connected to the first wedging interlock section. The first and second wedging interlock sections are shaped to move the first conductor contact surfaces of the first and second one-piece members towards each other when the first and second one-piece members are slid relative to each other.
In accordance with another aspect of the invention, a method is provided comprising forming a first member with a first section having a general hook shape forming a first conductor contact surface on an interior surface of the general hook shape; and integrally forming a second section having a first side forming a second conductor contact surface and an opposite second side. The second side faces the first conductor contact surface. The second side is sized and shaped to slidably interlock directly with a second member. The second side has two wedging surfaces which are stepped relative to each other.
The foregoing aspects and other features of the invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
Referring to
The connector 10 is a tap or splice electrical connector configured to electrically and mechanically connect two electrical conductors A, B to each other.
The second section 18 comprises a first side 22 and an opposite second side 24. The first side 22 is located at an outwardly facing exterior side of the first member 12. The first side 22 forms a second conductor contact surface 26 (see
The second member 14 has a general same shape as the first member 12. In one type of embodiment the second member 14 could be identical to the first member 12. However, in an alternate embodiment the general shapes could be different. The second member 14 is preferably a one-piece member made of metal. The second member 14 has a general cross sectional C shape with a first section 32 and an opposite second section 34. The first section 32 has a general hook shape with a second conductor contact surface 36 for contacting the second conductor B. The second conductor contact surface 36 is generally concave shaped and faces an inward direction.
The second section 34 comprises a first side 38 and an opposite second side 40. The first side 38 is located at an outwardly facing exterior side of the second member 14. The first side 38 forms a first conductor contact surface 42 for contacting the first conductor A. The second side 40 faces the second conductor contact surface 36. The second side 40 comprises two wedging surfaces 44, 46. However, in alternate embodiments more or less than two wedging surfaces could be provided. In this embodiment the two wedging surfaces 44, 46 are stepped relative to each other. The second side 40 is sized and shaped to slidably interlock directly with the second section 18 of the first member 12 as seen best in
Each member 12, 14 is sized and shaped to connect to a specific size conductor A, B or range of conductor sizes. More specifically, the size of member 12, 14 is selected based upon the size and shape of the conductor contact surface 20, 36 which is needed for the specific size of the conductors being connected to each other. The size and shape of the second sections 18, 34 are the same for any size of the members 12, 14. Thus, a modular type of connector can be provided with the sizes of the first and second members 12, 14 being interchangeably selected dependent upon the size of the conductors A, B. The connector 10 merely comprises only the two members 12, 14, but additional members could be provided.
To assemble the connector 10, the conductors A, B are inserted at the surfaces 20, 36 and the two second sections 18, 34 are slidably interconnected with each other. The two members 12, 14 are slid relative to each other as indicated by arrows 48 in
The first sections 16, 32 can preferably resiliently deform to form a spring load against the conductors A, B; similar to an electrical wedge connector. This causes the two second sections 18, 34 to frictionally engage with each other to prevent reverse movement of the members 12, 14 in a direction reverse to direction 48. Additional or alternative locking or latching of the members 12, 14 to each other at the final assembled position shown in
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. For example, features recited in the various dependent claims could be combined with each other in any suitable combination(s). In addition, features from different embodiments described above could be selectively combined into a new embodiment. Accordingly, the invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.